Tilman Esslinger: Catalogue data in Autumn Semester 2020

Name Prof. Dr. Tilman Esslinger
FieldQuanten-Optik
Address
Institut für Quantenelektronik
ETH Zürich, HPF D 4
Otto-Stern-Weg 1
8093 Zürich
SWITZERLAND
Telephone+41 44 633 23 40
E-mailesslinger@ethz.ch
DepartmentPhysics
RelationshipFull Professor

NumberTitleECTSHoursLecturers
402-0043-00LPhysics I Restricted registration - show details 4 credits3V + 1UT. Esslinger
AbstractIntroduction to the concepts and tools in physics with the help of demonstration experiments: mechanics of point-like and ridged bodies, periodic motion and mechanical waves.
Learning objectiveThe concepts and tools in physics, as well as the methods of an experimental science are taught. The student should learn to identify, communicate and solve physical problems in his/her own field of science.
ContentMechanics (motion, Newton's laws, work and energy, conservation of momentum, rotation, gravitation, fluids)
Periodic Motion and Waves (periodic motion, mechanical waves, acoustics).
Lecture notesThe lecture follows the book "Physics" by Paul A. Tipler.
LiteraturePaul A. Tipler and Gene P. Mosca, Physics (for Scientists and Engineers), W. H. Freeman and Company
402-0484-00LExperimental and Theoretical Aspects of Quantum Gases Information
Does not take place this semester.
6 credits2V + 1UT. Esslinger
AbstractQuantum Gases are the most precisely controlled many-body systems in physics. This provides a unique interface between theory and experiment, which allows addressing fundamental concepts and long-standing questions. This course lays the foundation for the understanding of current research in this vibrant field.
Learning objectiveThe lecture conveys a basic understanding for the current research on quantum gases. Emphasis will be put on the connection between theory and experimental observation. It will enable students to read and understand publications in this field.
ContentCooling and trapping of neutral atoms

Bose and Fermi gases

Ultracold collisions

The Bose-condensed state

Elementary excitations

Vortices

Superfluidity

Interference and Correlations

Optical lattices
Lecture notesnotes and material accompanying the lecture will be provided
LiteratureC. J. Pethick and H. Smith, Bose-Einstein condensation in dilute Gases,
Cambridge.
Proceedings of the Enrico Fermi International School of Physics, Vol. CXL,
ed. M. Inguscio, S. Stringari, and C.E. Wieman (IOS Press, Amsterdam,
1999).
402-0551-00LLaser Seminar0 credits1ST. Esslinger, J. Faist, J. Home, A. Imamoglu, U. Keller, F. Merkt, H. J. Wörner
AbstractResearch colloquium
Learning objective