Frédéric Allain: Catalogue data in Spring Semester 2019

Name Prof. Dr. Frédéric Allain
FieldBiomolecular NMR
Address
Institut für Biochemie
ETH Zürich, HPP L 14.1
Hönggerbergring 64
8093 Zürich
SWITZERLAND
Telephone+41 44 633 39 40
Fax+41 44 633 12 94
E-mailallain@bc.biol.ethz.ch
DepartmentBiology
RelationshipFull Professor

NumberTitleECTSHoursLecturers
551-0307-01LMolecular and Structural Biology II: From Gene to Protein
D-BIOL students are obliged to take part I and part II as a two-semester course.
3 credits2VN. Ban, F. Allain, S. Jonas, M. Pilhofer
AbstractThis course will cover advanced topics in molecular biology and biochemistry with emphasis on the structure and function of cellular assemblies involved in expression and maintenance of genetic information. We will cover the architecture and the function of molecules involved in DNA replication, transcription, translation, nucleic acid packaging in viruses, RNA processing, and CRISPER/CAS system.
Learning objectiveStudents will gain a deep understanding of large cellular assemblies and the structure-function relationships governing their function in fundamental cellular processes ranging from DNA replication, transcription and translation. The lectures throughout the course will be complemented by exercises and discussions of original research examples to provide students with a deeper understanding of the subjects and to encourage active student participation.
ContentAdvanced class covering the state of the research in structural molecular biology of basic cellular processes with emphasis on the function of large cellular assemblies.
Lecture notesUpdated handouts will be provided during the class.
LiteratureThe lecture will be based on the latest literature. Additional suggested
literature:
Branden, C., and J. Tooze, Introduction to Protein Structure, 2nd ed.
(1995). Garland, New York.
551-0434-00LNMR Spectroscopy in Biology Restricted registration - show details
Number of participants limited to 6.

The enrolment is done by the D-BIOL study administration.
6 credits7GF. Allain, A. D. Gossert, K. Wüthrich
AbstractIn this block course, students actively participate in ongoing research projects in the research groups of Profs. Allain, Wüthrich and Dr. Gossert. The students will be tutored in their experimental work by experienced postdoc students. In addition, the course includes specific lectures that provide the theoretical background for the experimental work, as well as exercises and literature work.
Learning objectiveThe course provides first "hands on" insight into applications of NMR spectroscopy in biological sciences. The course should enable the students to understand the potential and limitations of NMR applied to biological problems.
ContentThe topics include studies of proteins, RNA and protein-RNA interactions,

Participation in one of the following projects will be possible:
- NMR of RNA
- NMR of several protein-RNA complexes (hnRNPF, nPTB, SR proteins)
- NMR studies of protein-ligand interactions
- dynamics of protein-RNA complexes
- Segmental isotopic labeling to study multidomain proteins
- NMR Methods Development
Lecture notesNo script
LiteratureLists of individual reading assignments will be handed out.
551-1312-00LRNA-Biology II Restricted registration - show details
Number of participants limited to 16.

The enrolment is done by the D-BIOL study administration.
6 credits7GS. Jonas, F. Allain, C. Beyer, U. Kutay, O. Voinnet, K. Weis
AbstractIntroduction to the diversity of current RNA-research at all levels from structural biology to systems biology using mainly model systems like S. cerevisiae (yeast), mammalian cells.
Learning objectiveThe students will obtain an overview about the diversity of current RNA-research. They will learn to design experiments and use techniques necessary to analyze different aspects of RNA biology. Through lectures and literature seminars, they will learn about the burning questions of RNA research and discuss approaches to address these questions experimentally. In practical lab projects the students will work in one of the participating laboratories. Finally, they will learn how to present and discuss their data in an appropriate manner. Student assessment is a graded semester performance based on individual performance in the laboratory, the written exam and the project presentation.
Lecture notesRelevant material from the lectures will be made available during the course via the corresponding Moodle page.
LiteratureDocumentation and recommended literature will be provided at the beginning and during the course.
551-1414-00LMolecular and Structural Biology V: Studying Macromolecules by NMR and EPR4 credits2VF. Allain, A. D. Gossert, G. Jeschke, K. Wüthrich
AbstractThe course provides an overview of experimental methods for studying function and structure of macromolecules at atomic resolution in solution. The two main methods used are Nuclear Magnetic Resonance (NMR) spectroscopy and Electron Paramagnetic Resonance (EPR) spectroscopy.
Learning objectiveInsight into the methodology, areas of application and limitations of these two methods for studying biological macromolecules. Practical exercises with spectra to have hands on understanding of the methodology.
ContentPart I: Historical overview of structural biology.
Part II: Basic concepts of NMR and initial examples of applications.
2D NMR and isotope labeling for studying protein function and molecular interactions at atomic level.
Studies of dynamic processes of proteins in solution.
Approaches to study large particles.
Methods for determination of protein structures in solution.
Part III: NMR methods for structurally characterizing RNA and protein-RNA complexes.
Part IV: EPR of biomolecules
Literature1) Wüthrich, K. NMR of Proteins and Nucleic Acids, Wiley-Interscience.
2) Dominguez et al, Prog Nucl Magn Reson Spectrosc. 2011 Feb;58(1-2):1-61.
3) Duss O et al, Methods Enzymol. 2015;558:279-331.
551-1620-00LMolecular Biology, Biophysics1 credit1KR. Glockshuber, F. Allain, N. Ban, K. Locher, E. Weber-Ban, K. Wüthrich
AbstractThe course consists of a series of research seminars on Structural Biology and Biophysics, given by both scientists of the National Center of Competence in Research (NCCR) in Structural Biology and external speakers.
Learning objectiveThe goal of this course is to provide doctoral and postdoctoral students with a broad overview on the most recent developments in biochemistry, structural biology and biophysics.
Prerequisites / NoticeInformation on the individual seminars is provided on the following websites:
http://www.structuralbiology.unizh.ch/events005.asp
http://www.biol.ethz.ch/dbiol-cal/index