Daniel Kiper: Katalogdaten im Frühjahrssemester 2015

NameHerr Dr. Daniel Kiper
Adresse
Institut für Neuroinformatik
ETH Zürich, Y55 G 92
Winterthurerstrasse 190
8057 Zürich
SWITZERLAND
Telefon+41 44 633 83 35
E-Mailkiperd@ethz.ch
DepartementInformationstechnologie und Elektrotechnik
BeziehungDozent

NummerTitelECTSUmfangDozierende
227-1034-00LComputational Vision Information 6 KP2V + 1UD. Kiper, K. A. Martin
KurzbeschreibungIn diesem Kurs studieren wir die neuronalen Prozesse, welche die visuelle Wahrnehmung unterstützen. Wir lernen, wie visuelle Signale in der Netzhaut, dem CGN und im visuellen Kortex vearbeitet werden. Wir studieren die Morphologie und funktionelle Architektur der visuellen neuralen Netzwerke, die für Wahrnehmung von Form, Farbe, Bewegung, und Dreidimensionalität verantwortlich sind.
LernzielThis course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed.
The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will
be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered.
InhaltThis course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed.
The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will
be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered.