Wilhelm Gruissem: Katalogdaten im Herbstsemester 2019 |
Name | Herr Prof. em. Dr. Wilhelm Gruissem |
Lehrgebiet | Pflanzenbiotechnologie |
Adresse | Dep. Biologie ETH Zürich, LFW E 18 Universitätstrasse 2 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 08 57 |
Fax | +41 44 632 10 79 |
wilhelm_gruissem@ethz.ch | |
Departement | Biologie |
Beziehung | Professor emeritus |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
551-0003-AAL | General Biology I+II Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 7 KP | 13R | U. Sauer, R. Aebersold, W. Gruissem, O. Y. Martin, A. Widmer | |
Kurzbeschreibung | General Biology I: Organismic biology to teach the basic principles of classical and molecular genetics, evolutionary biology and phylogeny. General Biology II: Molecular biology approach to teach the basic principles of biochemistry, cell biology, cgenetics, evolutionary biology and form and function of vacular plants. | ||||
Lernziel | General Biology I: The understanding of basic principles of biology (inheritance, evolution and phylogeny) and an overview of the diversity of life. General Biology II: The understanding basic concepts of biology: the hierarchy of the structural levels of biological organisation, with particular emphasis on the cell and its molecular functions, the fundamentals of metabolism and molecular genetics, as well as form and function of vascular plants. | ||||
Inhalt | General Biology I: General Biology I focuses on the organismal biology aspects of genetics, evolution and diversity of life in the Campbell chapters 12-34. Week 1-7 by Alex Widmer, Chapters 12-25 12 Cell biology Mitosis 13 Genetics Sexual life cycles and meiosis 14 Genetics Mendelian genetics 15 Genetics Linkage and chromosomes 20 Genetics Evolution of genomes 21 Evolution How evolution works 22 Evolution Phylogentic reconstructions 23 Evolution Microevolution 24 Evolution Species and speciation 25 Evolution Macroevolution Week 8-14 by Oliver Martin, Chapters 26-34 26 Diversity of Life Introdution to viruses 27 Diversity of Life Prokaryotes 28 Diversity of Life Origin & evolution of eukaryotes 29 Diversity of Life Nonvascular&seedless vascular plants 30 Diversity of Life Seed plants 31 Diversity of Life Introduction to fungi 32 Diversity of Life Overview of animal diversity 33 Diversity of Life Introduction to invertebrates 34 Diversity of Life Origin & evolution of vertebrates General Biology II: The structure and function of biomacromolecules; basics of metabolism; tour of the cell; membrane structure and function; basic energetics of cellular processes; respiration, photosynthesis; cell cycle, from gene to protein; structure and growth of vascular plants, resource acquisition and transport, soil and plant nutrition. Specifically the following Campbell chapters will be covered: 3 Biochemistry Chemistry of water 4 Biochemistry Carbon: the basis of molecular diversity 5 Biochemistry Biological macromolecules and lipids 7 Cell biology Cell structure and function 8 Cell biology Cell membranes 10 Cell biology Respiration: introduction to metabolism 10 Cell biology Cell respiration 11 Cell biology Photosynthetic processes 16 Genetics Nucleic acids and inheritance 17 Genetics Expression of genes 18 Genetics Control of gene expression 19 Genetics DNA Technology 35 Plant structure&function Plant Structure and Growth 36 Plant structure&function Transport in vascular plants 37 Plant structure&function Plant nutrition 38 Plant structure&function Reproduction of flowering plants 39 Plant structure&function Plants signal and behavior | ||||
Skript | No script | ||||
Literatur | Campbell et al. (2015) Biology - A Global Approach. 10th Edition (Global Edition) | ||||
Voraussetzungen / Besonderes | Basic general and organic chemistry This is a virtual self-study lecture for non-German speakers of the "Allgemeine Biology I (551-0001-00L) and "Allgemeine Biology II (551-0002-00L) lectures. The exam will be written jointly with the participants of this lecture. | ||||
551-0108-AAL | Fundamentals of Biology II: Plant Biology Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 2 KP | 2R | W. Gruissem | |
Kurzbeschreibung | Water balance, assimilation, transport in plants; developmental biology, stress physiology. | ||||
Lernziel | Water balance, assimilation, transport in plants; developmental biology, stress physiology. | ||||
Skript | none | ||||
Literatur | Smith, A.M., et al.: Plant Biology, Garland Science, New York, Oxford, 2010 | ||||
Voraussetzungen / Besonderes | none | ||||
551-0120-00L | Plant Biology Colloquium (Autumn Semester) Only compulsory for Master students who started their Master in Autumn Semester 2017 or later. This compulsory course is required only once. It may be taken in autumn as course 551-0120-00 "Plant Biology Colloquium (Autumn Semester)" or in spring as course 551-0120-01 "Plant Biology Colloquium (Spring Semester)". | 2 KP | 1K | C. Sánchez-Rodríguez, W. Gruissem, A. Rodriguez-Villalon, O. Voinnet, S. C. Zeeman | |
Kurzbeschreibung | Current topics in Molecular Plant Biology presented by internal and external speakers from accademia. | ||||
Lernziel | Getting insight into actual areas and challenges of Molecular Plant Biology. | ||||
Inhalt | http://www.impb.ethz.ch/news-and-events/colloquium-impb.html | ||||
551-0360-00L | Applied Plant Biotechnology Number of participants limited to 8. The enrolment is done by the D-BIOL study administration. | 6 KP | 7G | W. Gruissem, R. B. Anjanappa, N. K. Bhullar | |
Kurzbeschreibung | The APB covers multidisciplinary aspects of green biotechnology. Students will acquire knowledge about transgenic crops in the world, processes to generate transgenic plants as well as strategies to engineer plants resistant to biotic and abiotic stresses. Development of new tools for plant biotechnology will be performed in the lab. Social aspects of green biotechnology will also be presented. | ||||
Lernziel | The complete field of Plant Biotechnology shall be introduced in order to provide an overview over the diversity of this discipline, its connections with other disciplines, and its historical context. A major focus of the block course will be the potential of genetic modification as a tool for gene function in basic science as well as for agronomic and/or commercial application dealing with benefit and risk. Basic methods will be handled in practical experiments, lectures will provide the theoretical background including issues beyond the scientific scene like patent issues, ethical considerations, or legal regulation. The goal of this teaching unit is to educate interested students such that they overlook the discipline, are able to understand the basic methodical and intellectual approaches, understand and critically interpret the literature on this field and are able to further follow the development in this field after finishing their studies. Finally, the students should learn to develop own research projects and follow them including communication of their work to the public or the media. | ||||
Inhalt | The following theoretical topics will be presented: - Plant tissue culture (N. benthamiana, cereals, cassava, cell cultures, somatic embryogenesis, regeneration) - Methods for genetic transformation (Agrobacterium) and Molecular analysis of genetically modified (GM) plants (copy number, inheritance of transgenes etc) - Selection systems (antibiotic and herbicide resistance, phosphor-mannose isomerase, marker-free systems, visible markers) - Inducible promoters, tissue specific promoters - Silencing and its application in plant biotechnology - Biotechnological tools for crop improvement (the case of cassava and rice) - Application potential (herbicide tolerance, pest and pathogen resistance, biofuel etc.) - Public interest (ethical issues, patenting of GM-plants, GM food, public outreach). Lectures will have a special focus on the contribution of biotechnology to the improvement of tropical crops such as cassava and rice. A visit to the greenhouse facilities is also planned to give the opportunity to discuss the different project performed at the ETH Plant Biotechnology Lab. For the practical part of the blockcourse, students will perform their own research project. It will aim at the development of new promoters for green biotechnology. Students will clone the specific promoters from different plant species and subsequently produce transgenic plant cells using the methods presented during the course. Project to identify new plant resistance genes from genetically diverse set of rice lines will also be carried out as part of the practicals. | ||||
Skript | Scripts will be distributed in the course for the practical parts and/or on Moodle platform. | ||||
Literatur | Literature will be provided in the course | ||||
Voraussetzungen / Besonderes | Lectures of APB are given in English. |