Richard Pink: Katalogdaten im Herbstsemester 2020 |
Name | Herr Prof. em. Dr. Richard Pink |
Lehrgebiet | Mathematik |
Adresse | Professur für Mathematik ETH Zürich, HG G 65.2 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 06 40 |
richard.pink@math.ethz.ch | |
URL | http://www.math.ethz.ch/~pink |
Departement | Mathematik |
Beziehung | Professor emeritus |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-3180-61L | Kategorien und abgeleitete Funktoren Bachelorstudium oder Masterstudium Mathematik mit Vorrang für 5. Semester Bachelorstudium | 4 KP | 2S | R. Pink | |
Kurzbeschreibung | |||||
Lernziel | |||||
401-5110-00L | Number Theory Seminar | 0 KP | 1K | Ö. Imamoglu, P. S. Jossen, E. Kowalski, P. D. Nelson, R. Pink, G. Wüstholz | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel | |||||
406-2004-AAL | Algebra II Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 5 KP | 11R | R. Pink | |
Kurzbeschreibung | Galois theory and related topics. The precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material. | ||||
Lernziel | Introduction to fundamentals of field extensions, Galois theory, and related topics. | ||||
Inhalt | The main topic is Galois Theory. Starting point is the problem of solvability of algebraic equations by radicals. Galois theory solves this problem by making a connection between field extensions and group theory. Galois theory will enable us to prove the theorem of Abel-Ruffini, that there are polynomials of degree 5 that are not solvable by radicals, as well as Galois' theorem characterizing those polynomials which are solvable by radicals. | ||||
Literatur | Joseph J. Rotman, "Advanced Modern Algebra" third edition, part 1, Graduate Studies in Mathematics,Volume 165 American Mathematical Society Galois Theory is the topic treated in Chapter A5. | ||||
Voraussetzungen / Besonderes | Algebra I, in Rotman's book this corresponds to the topics treated in the Chapters A3 and A4. | ||||
406-2005-AAL | Algebra I and II Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 12 KP | 26R | R. Pink | |
Kurzbeschreibung | Introduction and development of some basic algebraic structures - groups, rings, fields including Galois theory, representations of finite groups, algebras. The precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material. | ||||
Lernziel | |||||
Inhalt | Basic notions and examples of groups; Subgroups, Quotient groups and Homomorphisms, Group actions and applications Basic notions and examples of rings; Ring Homomorphisms, ideals, and quotient rings, rings of fractions Euclidean domains, Principal ideal domains, Unique factorization domains Basic notions and examples of fields; Field extensions, Algebraic extensions, Classical straight edge and compass constructions Fundamentals of Galois theory Representation theory of finite groups and algebras | ||||
Literatur | Joseph J. Rotman, "Advanced Modern Algebra" third edition, part 1, Graduate Studies in Mathematics,Volume 165 American Mathematical Society |