Ulrike Kutay: Catalogue data in Spring Semester 2019

Name Prof. Dr. Ulrike Kutay
FieldBiochemie
Address
Institut für Biochemie
ETH Zürich, HPM F 11.1
Otto-Stern-Weg 3
8093 Zürich
SWITZERLAND
Telephone+41 44 632 30 13
Fax+41 44 633 14 49
E-mailulrike.kutay@bc.biol.ethz.ch
DepartmentBiology
RelationshipFull Professor

NumberTitleECTSHoursLecturers
551-0103-AALFundamentals of Biology II: Cell Biology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
5 credits11RU. Kutay, Y. Barral, E. Hafen, G. Schertler, U. Suter, S. Werner
AbstractThe goal of this course is to provide students with a wide general understanding in cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.
Learning objectiveThe goal of this course is to provide students with a wide general understanding cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.
ContentThe focus is animal cells and the development of multicellular organisms with a clear emphasis on the molecular basis of cellular structures and phenomena. The topics include biological membranes, the cytoskeleton, protein sorting, energy metabolism, cell cycle and division, viruses, extracellular matrix, cell signaling, embryonic development and cancer research.
LiteratureAlberts et al. 'Molecular Biology of the Cell' 6th edition, 2014, ISBN 9780815344322 (hard cover) and ISBN 9780815345244 (paperback).

Topic/Lecturer/Chapter/Pages:

Analyzing cells & molecules / Gebhard Schertler/8/ 439-463;
Membrane structure / Gebhard Schertler/ 10/ 565-595;
Compartments and Sorting/ Ulrike Kutay/12+14+6/641-694/755-758/782-783/315-320/325 -333/Table 6-2/Figure6-20, 6-21, 6-32, 6-34;
Intracellular Membrane Traffic/ Ulrike Kutay/13/695-752;
The Cytoskeleton/ Ulrike Kutay/ 16/889 - 948 (only the essentials);
Membrane Transport of Small Molecules and the Electrical Properties of Membranes /Sabine Werner/11/597 - 633;
Mechanisms of Cell Communication / Sabine Werner/15/813-876;
Cancer/ Sabine Werner/20/1091-1141;
Cell Junctions and Extracellular Matrix/Ueli Suter / 1035-1081;
Stem Cells and Tissue Renewal/Ueli Suter /1217-1262;
Development of Multicellular organisms/ Ernst Hafen/ 21/ 1145-1179 /1184-1198/1198-1213;
Cell Migration/Joao Matos/951-960;
Cell Death/Joao Matos/1021-1032;
Cell Cycle/chromosome segregation/Cell division/Meiosis/Joao Matos/ 963-1018.
Prerequisites / Noticenone
551-0339-00LMolecular Mechanisms of Cell Dynamics Restricted registration - show details
Number of participants limited to 13.

The enrolment is done by the D-BIOL study administration.
6 credits7GE. Dultz, Y. Barral, U. Kutay, M. Peter, K. Weis
AbstractApplication of current strategies to study complex and highly regulated cellular processes during cell division and growth.
Learning objectiveThe students learn to evaluate and to apply the current strategies to study complex and highly regulated cellular processes during cell division and growth.
ContentDuring this Block-Course, the students will learn to (1) describe the main regulators and the mechanics of cell division and growth, (2) perform standard lab techniques and quantitate dynamic cellular processes during cell division and growth, (3) evaluate and compare experimental strategies and model systems, (4) independently search and critically evaluate scientific literature on a specific problem and present it in a seminar, and (5) formulate scientific concepts (preparation and presentation of a poster).
Students will work in small groups in individual labs on one research project (8 full days of practical work; every group of students will stay in the same lab during the entire course). The projects are close to the actual research carried out in the participating research groups, but with a clear connection to the subject of the course.
LiteratureDocumentation and recommended literature (review articles and selected primary literature) will be provided during the course.
Prerequisites / NoticeThis course will be taught in english.
551-1312-00LRNA-Biology II Restricted registration - show details
Number of participants limited to 16.

The enrolment is done by the D-BIOL study administration.
6 credits7GS. Jonas, F. Allain, C. Beyer, U. Kutay, O. Voinnet, K. Weis
AbstractIntroduction to the diversity of current RNA-research at all levels from structural biology to systems biology using mainly model systems like S. cerevisiae (yeast), mammalian cells.
Learning objectiveThe students will obtain an overview about the diversity of current RNA-research. They will learn to design experiments and use techniques necessary to analyze different aspects of RNA biology. Through lectures and literature seminars, they will learn about the burning questions of RNA research and discuss approaches to address these questions experimentally. In practical lab projects the students will work in one of the participating laboratories. Finally, they will learn how to present and discuss their data in an appropriate manner. Student assessment is a graded semester performance based on individual performance in the laboratory, the written exam and the project presentation.
Lecture notesRelevant material from the lectures will be made available during the course via the corresponding Moodle page.
LiteratureDocumentation and recommended literature will be provided at the beginning and during the course.