Ulrike Kutay: Catalogue data in Spring Semester 2015

Name Prof. Dr. Ulrike Kutay
FieldBiochemie
Address
Institut für Biochemie
ETH Zürich, HPM F 11.1
Otto-Stern-Weg 3
8093 Zürich
SWITZERLAND
Telephone+41 44 632 30 13
Fax+41 44 633 14 49
E-mailulrike.kutay@bc.biol.ethz.ch
DepartmentBiology
RelationshipFull Professor

NumberTitleECTSHoursLecturers
551-0103-AALFundamentals of Biology II: Cell Biology
Enrolment only for MSc students who need this course as additional requirement.
5 credits11RU. Kutay, Y. Barral, E. Hafen, G. Schertler, U. Suter, S. Werner
AbstractThe goal of this course is to provide students with a wide general understanding in cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.
Learning objectiveThe goal of this course is to provide students with a wide general understanding cell biology. With this material as a foundation, students have enough of a cell biological basis to begin their specialization not only in cell biology but also in related fields such as biochemistry, microbiology, pharmacological sciences, molecular biology, and others.
ContentThe focus is animal cells and the development of multicellular organisms with a clear emphasis on the molecular basis of cellular structures and phenomena. The topics include biological membranes, the cytoskeleton, protein sorting, energy metabolism, cell cycle and division, viruses, extracellular matrix, cell signaling, embryonic development and cancer research.
LiteratureAlberts et al. ‘Molecular Biology of the Cell’ Fifth edition, 2008 ISBN 978-0-8153-4105-5 (hard cover) and ISBN 978-0-8153-4106-2 (paperback).

Topic/Lecturer/Chapter/Pages: Introduction to Cell Biology/Gebhard Schertler/1+2+3+4/1-193; Cellular compartments/Gebhard Schertler/12/695-748; Membrane lipids/Gebhard Schertler/10/617-629; Working with cells/Ulrike Kutay/9/579-613; Mitochondria/Ulrike Kutay/12+14/695-703/713-723/815-818/856-860; Chloroplasts, peroxisomes/Ulrike Kutay/12+14/695-703/713-723/840-844/856-860; Structure and dynamics of the nucleus/Ulrike Kutay/6+12/362-366/704-706/710-712; Membrane proteins/Gebhard Schertler/10/629-650; Working with membranes/Gebhard Schertler/9/579-615; Nuclear transport of proteins/Ulrike Kutay/12/706-711; RNA processing and nuclear export/Ulrike Kutay/6/345-353/357-366/369; Endoplasmic reticulum/Ulrike Kutay/12/723-745; Vesicular transport/Ulrike Kutay/13/749-766; From the ER through the Golgi/Ulrike Kutay/13/766-779; From the TGN to Lysosomes and the plasma membrane/Ulrike Kutay/13/779-787/799-809; The plasma membrane and endocytosis/Ulrike Kutay/13/787-799; Introduction to the cytoskeleton/Ulrike Kutay/16/965-1035; Microtubules/Ulrike Kutay/16/965-1035; Actin/Muscle/Ulrike Kutay/16/965-1035; Cell polarization and migration/Yves Barral/16/1036-1052; Introduction to the cell cycle/Yves Barral/17/1053-1070; MPF and the cell cycle control machinery/Yves Barral/17/1053-1070; Mechanisms of chromosome segregation/Yves Barral/17/1070-1090; Cell division/Yves Barral/17/1090-1101; Apoptosis/Yves Barral/18/1115-1127; Membrane transport passive and active/Sabine Werner/11/651-667; Ion channels, action potential/Sabine Werner/11/667-687; General principles of signalling/Sabine Werner/15/879-903; Nuclear receptors, G-protein coupled receptors/Sabine Werner/15/879-921; Cell signalling; G-protein coupled receptors/Sabine Werner/15/904-921; Cell signalling; Receptor tyrosine kinases/Sabine Werner/15/921-938; Cell signalling; Tyrosine kinase associated receptors/Sabine Werner/15/921-938; Cell signalling; Receptor serine threonine kinases/Sabine Werner/15/939-944; Signalling through proteolysis/Sabine Werner/15/946-954; Cancer Biology/Sabine Werner/20/1205-1267; Cell-Cell Interactions/Ueli Suter/19/1131-1195; Extracellular Matrix/Ueli Suter/19/1131-1195; Regeneration / Stem Cells/Ueli Suter/23/1417-1484; Germ Cells and Sex Determination/Ernst Hafen/21/1269-1304; Development/Ernst Hafen/22/1305-1417
Prerequisites / Noticenone
551-0339-00LMolecular Mechanisms of Cell Dynamics Information Restricted registration - show details
Number of participants limited to 15
6 credits7GB. Kornmann, Y. Barral, U. Kutay, M. Peter
AbstractApplication of current strategies to study complex and highly regulated cellular processes during cell division and growth.
Learning objectiveThe students learn to evaluate and to apply the current strategies to study complex and highly regulated cellular processes during cell division and growth.
ContentDuring this Block-Course, the students will learn to (1) describe the main regulators and the mechanics of cell division and growth, (2) perform standard lab techniques and quantitate dynamic cellular processes during cell division and growth, (3) evaluate and compare experimental strategies and model systems, (4) independently search and critically evaluate scientific literature on a specific problem and present it in a seminar, and (5) formulate scientific concepts (preparation and presentation of a poster).
Students will work in small groups in individual labs on one research project (8 full days of practical work; every group of students will stay in the same lab during the entire course). The projects are close to the actual research carried out in the participating research groups, but with a clear connection to the subject of the course.
LiteratureDocumentation and recommended literature (review articles and selected primary literature) will be provided during the course.
Prerequisites / NoticeThis course will be taught in english.