Shih-Chii Liu: Catalogue data in Autumn Semester 2023

Name PD Dr. Shih-Chii Liu
FieldNeuromorphic and bio-inspired circuits and systems
Address
Institut für Neuroinformatik
ETH Zürich, Y55 G 86
Winterthurerstrasse 190
8057 Zürich
SWITZERLAND
Telephone+41 44 635 30 47
E-mailscliu@ethz.ch
URLhttp://www.ini.uzh.ch/~shih
DepartmentInformation Technology and Electrical Engineering
RelationshipPrivatdozentin

NumberTitleECTSHoursLecturers
227-1033-00LNeuromorphic Engineering I Restricted registration - show details
Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots.
Preference is given to students that require this class as part of their major.

Information for UZH students:
Enrolment to this course unit only possible at ETH. No enrolment to module INI404 at UZH.
Please mind the ETH enrolment deadlines for UZH students: Link
6 credits2V + 3UT. Delbrück, S.‑C. Liu, M. Payvand
AbstractThis course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.
Learning objectiveUnderstanding of the characteristics of neuromorphic circuit elements.
ContentNeuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems.
LiteratureS.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.
Prerequisites / NoticeParticular: The course is highly recommended for those who intend to take the spring semester course 'Neuromorphic Engineering II', that teaches the conception, simulation, and physical layout of such circuits with chip design tools.

Prerequisites: Background in basics of semiconductor physics helpful, but not required.
227-1039-00LBasics of Instrumentation, Measurement, and Analysis (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.
UZH Module Code: INI502

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html

Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots.
Preference is given to students that require this class as part of their major.
4 credits9SS.‑C. Liu, T. Delbrück, R. Hahnloser, G. Indiveri, V. Mante, P. Pyk, W. von der Behrens
AbstractExperimental data are always as good as the instrumentation and measurement, but never any better. This course provides the very basics of instrumentation relevant to neurophysiology and neuromorphic engineering, it consists of two parts: a common introductory part involving analog signals and their acquisition (Part I), and a more specialized second part (Part II).
Learning objectiveThe goal of Part I is to provide a general introduction to the signal acquisition process. Students are familiarized with basic lab equipment such as oscilloscopes, function generators, and data acquisition devices. Different electrical signals are generated, visualized, filtered, digitized, and analyzed using Matlab (Mathworks Inc.) or Labview (National Instruments).

In Part II, the students are divided into small groups to work on individual measurement projects according to availability and interest. Students single-handedly solve a measurement task, making use of their basic knowledge acquired in the first part. Various signal sources will be provided.
Prerequisites / NoticeFor each part, students must hand in a written report and present a live demonstration of their measurement setup to the respective supervisor. The supervisor of Part I is the teaching assistant, and the supervisor of Part II is task specific. Admission to Part II is conditional on completion of Part I (report + live demonstration).

Reports must contain detailed descriptions of the measurement goal, the measurement procedure, and the measurement outcome. Either confidence or significance of measurements must be provided. Acquisition and analysis software must be documented.
227-1043-00LNeuroinformatics - Colloquia (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.
UZH Module Code: INI701

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html
0 credits1KS.‑C. Liu, R. Hahnloser, V. Mante
AbstractThe colloquium in Neuroinformatics is a series of lectures given by invited experts. The lecture topics reflect the current themes in neurobiology and neuromorphic engineering that are relevant for our Institute.
Learning objectiveThe goal of these talks is to provide insight into recent research results. The talks are not meant for the general public, but really aimed at specialists in the field.
ContentThe topics depend heavily on the invited speakers, and thus change from week to week.
All topics concern neural computation and their implementation in biological or artificial systems.
227-1045-00LReadings in Neuroinformatics (University of Zurich)
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student.
UZH Module Code: INI431

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html
3 credits1SW. von der Behrens, R. Hahnloser, S.‑C. Liu, V. Mante
AbstractThirteen major areas of research have been selected, which cover the key concepts that have led to our current ideas of how the nervous system is built and functions. We will read both original papers and explore the conceptual the links between them and discuss the 'sociology' of science, the pursuit of basic science questions over a century of research."
Learning objectiveIt is commonplace that scientists rarely cite literature that is older than 10 years and when they do, they usually cite one paper that serves as the representative for a larger body of work that has long since been incorporated anonymously in textbooks. Even worse, many authors have not even read the papers they cite in their own publications. This course, ‘Foundations of Neuroscience’ is one antidote. Thirteen major areas of research have been selected. They cover the key concepts that have led to our current ideas of how the nervous system is built and functions. Unusually, we will explore these areas of research by reading the original publications, instead of reading a digested summary from a textbook or review. By doing this, we will learn how the discoveries were made, what instrumentation was used, how the scientists interpreted their own findings, and how their work, often over many decades and linked together with related findings from many different scientists, generate the current views of mechanism and structure of the nervous system. We will read different original papers and explore the conceptual links between them and discuss the ‘sociology’ of science. We will also explore the personalities of the scientists and the context in which they made their seminal discoveries. Each week , course members will be given original papers to read for homework and they will write a short abstract for each paper. We will then meet weekly with the course leader and an assistant for an hour-or-so long interactive seminar. An intimate knowledge of the papers will be assumed so that the discussion does not center simply on an explication of the contents of the papers. Assessment will be in the form of assignments throughout the semester.
ContentIt is commonplace that scientists rarely cite literature that is older than 10 years and when they do, they usually cite one paper that serves as the representative for a larger body of work that has long since been incorporated anonymously in textbooks. Even worse, many authors have not even read the papers they cite in their own publications. This course, ‘Foundations of Neuroscience’ is one antidote. Thirteen major areas of research have been selected. They cover the key concepts that have led to our current ideas of how the nervous system is built and functions. Unusually, we will explore these areas of research by reading the original publications, instead of reading a digested summary from a textbook or review. By doing this, we will learn how the discoveries were made, what instrumentation was used, how the scientists interpreted their own findings, and how their work, often over many decades and linked together with related findings from many different scientists, generate the current views of mechanism and structure of the nervous system. We will read different original papers and explore the conceptual links between them and discuss the ‘sociology’ of science. We will also explore the personalities of the scientists and the context in which they made their seminal discoveries. Each week , course members will be given original papers to read for homework and they will write a short abstract for each paper. We will then meet weekly with the course leader and an assistant for an hour-or-so long interactive seminar. An intimate knowledge of the papers will be assumed so that the discussion does not center simply on an explication of the contents of the papers. Assessment will be in the form of assignments throughout the semester.
Prerequisites / NoticeRestricted adminission. Only open for students of the MSc program 'Neural Systems and Computation'.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed