Friedemann Mattern: Catalogue data in Autumn Semester 2017 |
Name | Prof. em. Dr. Friedemann Mattern |
Field | Informatik |
Address | Zasiusstr. 111 79102 Freiburg GERMANY |
Telephone | +49 761 70766547 |
mattern@inf.ethz.ch | |
URL | http://people.inf.ethz.ch/mattern/ |
Department | Computer Science |
Relationship | Professor emeritus |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
252-0213-00L | Distributed Systems Diese Lehrveranstaltung wird im HS17 zum letzten Mal in dieser Form angeboten. | 8 credits | 6G + 1A | F. Mattern, R. Wattenhofer | |
Abstract | Distributed control algorithms (mutual exclusion, logical clocks), communication models (RPC, synchronous/asynchronous communication, broadcast, events, tupel spaces), middleware, service- and resource-oriented architectures (SOAP, REST), security, fault-tolerance (failure models, consensus), replication (primary copy, 2PC, 3PC, Paxos, quorum systems), shared memory (spin locks, concurrency). | ||||
Learning objective | Become acquainted with pertinent technologies and architectures of distributed systems. | ||||
Content | We present the characteristics and concepts of distributed systems, and discuss distributed control algorithms (flooding, mutual exclusion, logical clocks), communications models (remote procedure call, client-server models, synchronous and asynchronous communication), abstract communication principles (broadcast, events, tupel spaces), name services, communication middleware for open systems (e.g., REST, SOAP), infrastructure for ad hoc networking (JINI), cloud computing, and mechanisms for security and safety. Having a distributed system may permit getting away with failures and malfunctions of parts of the system. We discuss fault-tolerance issues (models, consensus, agreement) as well as replication issues (primary copy, 2PC, 3PC, Paxos, quorum systems, distributed storage) and problems with asynchronous multiprocessing (shared memory, spin locks, concurrency). To get familiar with message passing communication, some of the exercises will be devoted to a practical lab where participants will develop software for a mobile platform (smartphones). | ||||
252-0437-00L | Distributed Algorithms | 4 credits | 3V | F. Mattern | |
Abstract | Models of distributed computations, time space diagrams, virtual time, logical clocks and causality, wave algorithms, parallel and distributed graph traversal, consistent snapshots, mutual exclusion, election and symmetry breaking, distributed termination detection, garbage collection in distributed systems, monitoring distributed systems, global predicates. | ||||
Learning objective | Become acquainted with models and algorithms for distributed systems. | ||||
Content | Verteilte Algorithmen sind Verfahren, die dadurch charakterisiert sind, dass mehrere autonome Prozesse gleichzeitig Teile eines gemeinsamen Problems in kooperativer Weise bearbeiten und der dabei erforderliche Informationsaustausch ausschliesslich über Nachrichten erfolgt. Derartige Algorithmen kommen im Rahmen verteilter Systeme zum Einsatz, bei denen kein gemeinsamer Speicher existiert und die Übertragungszeit von Nachrichten i.a. nicht vernachlässigt werden kann. Da dabei kein Prozess eine aktuelle konsistente Sicht des globalen Zustands besitzt, führt dies zu interessanten Problemen. Im einzelnen werden u.a. folgende Themen behandelt: Modelle verteilter Berechnungen; Raum-Zeit Diagramme; Virtuelle Zeit; Logische Uhren und Kausalität; Wellenalgorithmen; Verteilte und parallele Graphtraversierung; Berechnung konsistenter Schnappschüsse; Wechselseitiger Ausschluss; Election und Symmetriebrechung; Verteilte Terminierung; Garbage-Collection in verteilten Systemen; Beobachten verteilter Systeme; Berechnung globaler Prädikate. | ||||
Literature | - F. Mattern: Verteilte Basisalgorithmen, Springer-Verlag - G. Tel: Topics in Distributed Algorithms, Cambridge University Press - G. Tel: Introduction to Distributed Algorithms, Cambridge University Press, 2nd edition - A.D. Kshemkalyani, M. Singhal: Distributed Computing, Cambridge University Press - N. Lynch: Distributed Algorithms, Morgan Kaufmann Publ | ||||
252-0817-00L | Distributed Systems Laboratory In the Master Programme max.10 credits can be accounted by Labs on top of the Interfocus Courses. These Labs will only count towards the Master Programme. Additional Labs will be listed on the Addendum. | 10 credits | 9P | G. Alonso, T. Hoefler, F. Mattern, T. Roscoe, A. Singla, R. Wattenhofer, C. Zhang | |
Abstract | This course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including wireless networks, ad-hoc networks, RFID, and distributed applications on smartphones. | ||||
Learning objective | Gain hands-on-experience with real products and the latest technology in distributed systems. | ||||
Content | This course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including as well wireless networks, ad-hoc networks, and distributed application on smartphones. The goal of the project is for the students to gain hands-on-experience with real products and the latest technology in distributed systems. There is no lecture associated to the course. For information of the course or projects available, see https://www.dsl.inf.ethz.ch/ or contact Prof. Mattern, Prof. Wattenhofer, Prof. Roscoe or Prof. G. Alonso. | ||||
252-3610-00L | Smart Energy | 5 credits | 3G + 1A | F. Mattern, V. C. Coroama, V. Tiefenbeck | |
Abstract | The lecture covers the role of ICT for sustainable energy usage. Concepts of the emerging smart grid are outlined and approaches to motivate sustainable consumer choices are explained. The lecture combines technologies from ubiquitous computing and traditional ICT with insights from socio-psychological concepts and illustrates them with examples from actual applications. | ||||
Learning objective | Participants become familiar with the challenges related to sustainable energy usage, understand the principles of a smart grid infrastructure and its applications, know the role of ubiquitous computing technologies, can explain the challenges regarding security and privacy, can reflect the basics cues to induce changes in consumer behavior, develop a general understanding of the effects of a smart grid infrastructure on energy efficiency, and know how to apply the learning to related design projects. | ||||
Content | - Background on energy generation and consumption; characteristics, potential, and limitations of renewable energy sources - Introduction to energy economics - Smart grid and smart metering infrastructures, virtual power plants, security challenges - Demand managemenet and home automation using ubiquitous computing technologies - Changing consumer behavior with smart ICT - Benefits challenges of a smart energy system | ||||
Literature | Will be provided during the course, though a good starting point is "ICT for green: how computers can help us to conserve energy" from Friedemann Mattern, Thosten Staake, and Markus Weiss (available at http://www.vs.inf.ethz.ch/publ/papers/ICT-for-Green.pdf). | ||||
Prerequisites / Notice | The lecture includes interactive exercises, case studies and practical examples. |