Thomas Driesner: Catalogue data in Spring Semester 2021

Name Prof. Dr. Thomas Driesner
Inst. für Geochemie und Petrologie
ETH Zürich, NW F 72
Clausiusstrasse 25
8092 Zürich
Telephone+41 44 632 68 03
Fax+41 44 632 18 27
DepartmentEarth Sciences
RelationshipAdjunct Professor and Privatdozent

651-4024-00LMineral Resources II3 credits2GC. Chelle-Michou, T. Driesner
AbstractMagmatic-hydrothermal ore formation from plate-tectonic scale to fluid inclusions, with a focus on porphyry-Cu-Au deposits, epithermal precious-metal deposits and granite-related Sn-W deposits
ObjectiveRecognise and interpret ore-forming processes in hand samples. Understand the string of processes that contribute to metal enrichment mainly along active plate margins, from lithosphere dynamics through magma evolution, fluid separation, subsolidus fluid evolution, and alteration and mineral precipitation by interaction of magmatic fluids with country rocks and the hydrosphere. Understand connection to active volcanism and geothermal processes. Insight into modern research approaches including field mapping, analytical techniques and modelling in preparation for MSc projects.
ContentDetailed program of contents will be updated yearly.
Lecture notesShort notes are distributed in class
LiteratureExtensive reference list distributed with course notes
Prerequisites / NoticeBuilds on BSc integration course "Integrierte Erdsysteme" and MSc course "Mineral Resources I", as essential introductions to the principles of hydrothermal ore formation in sedimentary basins and to orthomagmatic metal enrichment. Reflected Light Microscopy and Ore Deposit Practical, coordinated with Mineral Resources I, is recommended but not essential. BSc students intending to study the module Mineral Resources in their MSc program should take both courses "Mineral Resources I and II" during their MSc studies.
651-4036-00LField Excursion Module Mineral Resources
Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost.

No registration through myStudies. The registration for excursions and field courses goes through only.
3 credits6PT. Driesner, C. Chelle-Michou
AbstractExcursion to areas of active and past mining activity and practical industry courses. Mapping relations between regional/local geology and ore deposit formation in the field and in active mines. Insight into the work of mine and exploration geologists, including geophysical measurements, geochemical data handling, economic evaluation, etc.
ObjectiveUnderstand the regional and local geology as a framework for ore deposit formation. Detailed field and drill core mapping of hydrothermal veining and alteration. Discuss actual mineral deposits and their position within this framework during mine visits. Study similarities and differences between processes leading to the formation of different ore deposit types. Obtain insight into challenges linking economic geology and mining with social and environmental constraints.
Prerequisites / NoticeCourse plans changing through the years. Subscribe through MyStudies once.

Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW
651-4180-03LIntegrated Earth Systems III Restricted registration - show details 5 credits4G + 1US. Heuberger, T. Driesner, A. Gilli, J. Niederau, M. O. Saar
AbstractThe course Integrated Earth Systems III addresses geological resources (georesources) from an integrative perspective. The course covers three interacting focus themes:
1) non-metallic mineral resources (aggregates, cement raw materials, hydrocarbons),
2) geothermal resources (geothermal energy),
3) metallic mineral resources (ores).
ObjectiveThe students develop an overview of the different usable geological resources on earth. In particular, they will discuss and amplify their understanding of the genesis of these georesources in the context of the interacting petrological, tectonic, geophysical and geochemical processes. The students will be able to classify the resources' economic significance and to judge their responsible utilisation.
ContentDer dritte Teil der Vorlesung "Intergrierte Erdsysteme" behandelt geologische Rohstoffe, die Georessourcen. Drei Schwerpunkte werden in dieser Lehrveranstaltung gesetzt: 1. nicht-metallische mineralische Rohstoffe (Steine & Erden, Kohlenwasserstoffe, Industrieminerale, Salze), 2. Geothermie, 3. Metallische Rohstoffe (Erzlagerstätten).
Der Teil der nicht-metallischen mineralischen Rohstoffe diskutiert die Entstehung sowie die Prospektion dieser Rohstoffe an ausgewählten Beispielen. Die Studierenden erhalten Einblick in die tektonischen und sedimentären Bedingungen, die zur Lagerstättenbildung geführt haben, sowie in die zu deren Auffindung benötigten Prospektionstechniken und Geodaten (z.B. 3D-Modelle, Bohrungen, Seismik).
Der Geothermie-Teil befasst sich mit der Nutzung von Niedrig- und Hoch-Enthalpie Geothermie-Systemen zur Gewinnung von Wärme und/oder Strom. Die Studierenden werden vom geologischen Untergrund, und den darin vorkommenden und zirkulierenden Flüssigkeiten, über das geothermische Kraftwerk an der Erdoberfläche bis hin zu den Wärme- und/oder Strom-Gestehungskosten, die wesentlichen Aspekte eines geothermischen Kraftwerkes qualitativ und semi-quantitativ untersuchen und beurteilen.
Der Teil über Erzlagerstätten stellt ausgewählte Lagerstättentypen und deren Bildung in den Kontext von tektonischen, petrologischen und geochemischen Prozessen. Die Studierenden werden anhand von umfangreichem Probenmaterial die wichtigsten Charakteristika dieser Lagerstätten erarbeiten und die Interpretation von kleinskaligen Feldbeziehungen üben. Daraus werden qualitative und semi-quantitative Rückschlüsse über die chemischen Prozesse hinter der Anreicherung von Erzmetallen abgeleitet.
651-4240-00LGeofluids6 credits4GX.‑Z. Kong, T. Driesner, S. Kyas, A. Moreira Mulin Leal
AbstractThis course presents advanced topics of single/multiphase fluid flow, heat transfer, reactive transport, and geochemical reactions in the subsurface. Emphasis is on the understanding of the underlying governing equations of each physical and chemical process, and their relevance to applications, e.g., groundwater management, geothermal energy, CO2 storage, waste disposal, and oil/gas production.
ObjectiveThis course presents the tools for understanding and modeling basic physical and chemical processes in the subsurface. In particular, it will focus on fluid flow, reactive transport, heat transfer, and fluid-rock interactions in a porous and/or fractured medium. The students will learn the underlying governing equations, followed by a demonstration of corresponding analytical or/and numerical solutions.
By the end of the course, the student should be able to:
1. Understand, formulate, and derive the governing equations of fluid flow, heat transfer, and solute transport;
2. Understand and apply the underlying physical and chemical processes to simplify and model practical subsurface problems;
3. Solve simple flow problems affected by fluid density (induced by the solute concentration or temperature);
4. Understand and be able to assess the uncertainties pertaining to the reactive transport processes;
5. Assess simple coupled reactive transport problems.
Content1) Introduction to the fundamental concepts of fluid flow in the subsurface
2) Immiscible fluid flow in porous/fractured media
3) Solute transport and heat transfer in subsurface
4) Density-driven flow
5) Uncertainty estimation
6) Reactive transport
7) Fluid injection and production
8) Fluid-rock interactions (non-mechanical)
(8a) mineral and gas solubility in brines
(8b) mineral dissolution/precipitation affecting rock porosity and permeability
LiteratureR. Allan Freeze and John A. Cherry. Groundwater. 1979.
Steven E. Ingebritsen, Ward E. Sanford, and Christopher E. Neuzil. Groundwater in geologic processes. 2008.
Vedat Batu. Applied flow and solute transport modelling in aquifers. 2006.
Luigi Marini. Geological sequestration of carbon dioxide : thermodynamics, kinetics, and reaction path modeling. 2006.
Jacob Bear. Dynamics of fluids in porous media. 1988.
Prerequisites / NoticePrerequisites: successful completion of 651-4023-00 Groundwater, 102-0455-00 Groundwater I or 651-4001-00 Geophysical Fluid Dynamics