Sabine Werner: Catalogue data in Autumn Semester 2023

Award: The Golden Owl
Name Prof. Dr. Sabine Werner
FieldZellbiologie
Address
Inst. f. Molecular Health Sciences
ETH Zürich, HPL F 12
Otto-Stern-Weg 7
8093 Zürich
SWITZERLAND
Telephone+41 44 633 39 41
Fax+41 44 633 11 74
E-mailsabine.werner@biol.ethz.ch
DepartmentBiology
RelationshipFull Professor

NumberTitleECTSHoursLecturers
551-0127-00LFundamentals of Biology III: Multicellularity8 credits6GM. Stoffel, M. Künzler, O. Y. Martin, U. Suter, S. Werner, A. Wutz, S. C. Zeeman
AbstractThe lecture conveys the fundamental concepts underlying multicellularity with an emphasis on the molecular basis of multicellular biological systems and their functional integration into coherent wholes. The structural and functional specialization in multicellular organisms will be discussed by highlighting common and specific functions in fungi, plants, and animals (including humans).
Learning objective1.Students can describe advantages and challenges associated with being multicellular and outline independent solutions that organisms have developed to cope with the challenges of complex multicellularity
.
2.Students can explain how the internal and external structures of fungi, plants and animals function to support survival, growth, behavior, and reproduction.

3.Students can explain the basic pathways and mechanisms of cellular communication regulating cellular behavior (cell adhesion, metabolism, proliferation, reproduction, development).

4.Students can describe how a single cell develops from one cell into many, each with different specialized functions.
ContentThe lecture introduces the structural and functional specialization in fungi, plants and animals, including humans. After providing an overview on the diversity of eukaryotic organisms, the lecture will discuss how fungi, plants, animals and humans have evolved structures and strategies to cope with the challenges of multicellularity. The molecular basis underlying communication, coordination and differentiation will be conveyed and complemented by key aspects of reproduction, metabolism development, and regeneration. Topics include form and function of fungi and plants, human anatomy and physiology, metabolism, cell signaling, adhesion, stem cells, regeneration, reproduction, and development.
LiteratureAlberts et al. 'Molecular Biology of the Cell' 6th edition
Smith A.M., et al. “Plant Biology” Garland Science, New York, Oxford
Campbell “Biology”, 11th Edition
Prerequisites / NoticeSome lecture are held in English.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesassessed
Social CompetenciesCooperation and Teamworkfostered
Personal CompetenciesCreative Thinkingfostered
Critical Thinkingassessed
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
551-1511-00LParallels Between Tissue Repair and Cancer Restricted registration - show details
Number of participants limited to 20.
The enrolment is done by the D-BIOL study administration.
6 credits7PS. Werner, H. Gehart, M. Schäfer
AbstractThis course aims at the understanding of the cellular and molecular mechanisms underlying tissue repair processes in response to different insults. The focus will be on repair of the skin and the liver. In addition, we will highlight the parallels and differences between tissue repair and cancer.
Learning objectiveTo learn the cellular and molecular principles underlying tissue repair processes, in particular in the skin and in the liver, and the parallels and differences to cancer. To learn modern technologies in Molecular and Cellular Biology as well as Histology and to use these technologies to study questions related to mechanisms underlying tissue repair and cancer.
ContentThis course aims at the understanding of the cellular and molecular mechanisms underlying tissue repair processes in response to different insults. The focus will be on repair of the skin and the liver. In addition, we will highlight the parallels and differences between tissue repair and cancer. Experimental approaches include biochemical studies, molecular and cellular studies using cultured cell lines and primary cells, as well as analysis of murine and human tissues.
The course combines practical work with lectures, discussions, project preparations and presentations.
Lecture notessiehe Lernmaterialien