Thomas Markus Ihn: Catalogue data in Autumn Semester 2021 
Name  Prof. Dr. Thomas Markus Ihn 
Field  Experimentalphysik 
Address  Laboratorium für Festkörperphysik ETH Zürich, HPF E 15.1 OttoSternWeg 1 8093 Zürich SWITZERLAND 
Telephone  +41 44 633 22 80 
Fax  +41 44 633 11 46 
ihn@phys.ethz.ch  
URL  https://nano.phys.ethz.ch/ 
Department  Physics 
Relationship  Adjunct Professor and Privatdozent 
Number  Title  ECTS  Hours  Lecturers  

402007300L  Physics I  3 credits  2V + 2U  T. M. Ihn  
Abstract  Introduction to the concepts and tools in physics with the help of demonstration experiments: mechanics and elements of quantum mechanics  
Objective  Students know and understand the basic ideas of the scientific description of nature. They understand the fundamental concepts and laws of mechanics and they are able to apply them in practical problems. They know the concepts of quantization and quantum numbers.  
Content  1. Description of Motion 2. The laws of Newton 3. Work and energy 4. Collision problems 5. Wave properties of particles 6. The atomic structure of matter  
Lecture notes  T. Ihn: Physics for Students in Biology and Pharmazeutical Sciences (unpublished lecture notes)  
Literature  The lecture contains elements of: Paul A. Tipler and Gene P. Mosca, "Physik für Wissenschaftler und Ingenieure", Springer Spektrum. Feynman, Leighton, Sands, "The Feynman Lectures on Physics", Volume I (http://www.feynmanlectures.caltech.edu/)  
Fostered competencies 
 
402053000L  Mesoscopic Systems  0 credits  1S  T. M. Ihn  
Abstract  Research colloquium  
Objective  
402059500L  Semiconductor Nanostructures  6 credits  2V + 1U  T. M. Ihn  
Abstract  The course covers the foundations of semiconductor nanostructures, e.g., materials, band structures, bandgap engineering and doping, fieldeffect transistors. The physics of the quantum Hall effect and of common nanostructures based on twodimensional electron gases will be discussed, i.e., quantum point contacts, AharonovBohm rings and quantum dots.  
Objective  At the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures: 1. The integer quantum Hall effect 2. Conductance quantization in quantum point contacts 3. the AharonovBohm effect 4. Coulomb blockade in quantum dots  
Content  1. Introduction and overview 2. Semiconductor crystals: Fabrication and molecular beam epitaxy 3. Band structures of semiconductors 4. k.ptheory, effective mass, envelope functions 5. Heterostructures and band engineering, doping 6. Surfaces and metalsemiconductor contacts, fabrication of semiconductor nanostructures 7. Heterostructures and twodimensional electron gases 8. Drude Transport and scattering mechanisms 9. Single and bilayer graphene 10. Electron transport in quantum point contacts; LandauerBüttiker description, ballistic transport experiments 11. Interference effects in AharonovBohm rings 12. Electron in a magnetic field, Shubnikovde Haas effect 13. Integer quantum Hall effect 14. Coulomb blockade and quantum dots  
Lecture notes  T. Ihn, Semiconductor Nanostructures, Quantum States and Electronic Transport, Oxford University Press, 2010.  
Literature  In addition to the lecture notes, the following supplementary books can be recommended: 1. J. H. Davies: The Physics of LowDimensional Semiconductors, Cambridge University Press (1998) 2. S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press (1997) 3. D. Ferry: Transport in Nanostructures, Cambridge University Press (1997) 4. T. M. Heinzel: Mesoscopic Electronics in Solid State Nanostructures: an Introduction, WileyVCH (2003) 5. Beenakker, van Houten: Quantum Transport in Semiconductor Nanostructures, in: Semiconductor Heterostructures and Nanostructures, Academic Press (1991) 6. Y. Imry: Introduction to Mesoscopic Physics, Oxford University Press (1997)  
Prerequisites / Notice  The lecture is suitable for all physics students beyond the bachelor of science degree. Basic knowledge of solid state physics is a prerequisit. Very ambitioned students in the third year may be able to follow. The lecture can be chosen as part of the PhDprogram. The course is taught in English.  
Fostered competencies 
