Thomas Markus Ihn: Catalogue data in Spring Semester 2017

Name Prof. Dr. Thomas Markus Ihn
FieldExperimentalphysik
Address
Laboratorium für Festkörperphysik
ETH Zürich, HPF E 15.1
Otto-Stern-Weg 1
8093 Zürich
SWITZERLAND
Telephone+41 44 633 22 80
Fax+41 44 633 11 46
E-mailihn@phys.ethz.ch
URLhttps://nano.phys.ethz.ch/
DepartmentPhysics
RelationshipAdjunct Professor and Privatdozent

NumberTitleECTSHoursLecturers
402-0072-00LPhysics5 credits5V + 2UT. M. Ihn
AbstractIntroduction to the concepts and tools in physics with the help of demonstration experiments: mechanics, electromagnetism and waves.
ObjectiveThe concepts and tools in physics, as well as the methods of an experimental science are taught. The student should learn to identify, communicate and solve physical problems in his/her own field of science.
ContentMECHANIK
-Einheitensysteme, eindimensionale Bewegung
-Bewegung in zwei und drei Dimensionen
-Newtonsche Axiome
-Anwendung der Newtonschen Axiome, rotierende Systeme, Widerstandskräfte
-Arbeit und Energie, Leistung, Energieerhaltung
-Teilchensysteme und Impulserhaltung, Stösse in zwei und drei Dimensionen
-Drehbewegungen, Drehimpulserhaltung
-Starre Körper, Schwerpunkt, Spannung + Dehnung
-Mechanik deformierbarer Körper, bewegte Fluide
-Schwingungen, mathematisches + (physikalisches Pendel)
-Wellen, harmonische Wellen, stehende Wellen


ELEKTRIZITÄT UND MAGNETISMUS
-Das elektrische Feld, Coulombsche Gesetz, Dipol
-Kontinuierliche Ladungsverteilungen, Gauss'sche Gesetz, das elektrische Potential
-Elektrostatische Energie, Kapazität, Kondensator, Dielektrika
-Elektrischer Strom, Ohm'sche Gesetz
-Das Magnetfeld, Kraft auf stromdurchflossenen Leiter, Feldlinien, Leiterschleifen
-Quellen des magnetischen Feldes, Biot-Savart, Spule (einfach), Ampèresche Gesetz
-Magnetische Induktion, magnetische Fluss
-Energie des Magnetfeldes
-Maxwellsche Gleichungen
-Wellengleichung, elektromagnetische Wellen
-Eigenschaften des Lichts, Lichtquellen, Polarisation
-Optische Abbildungen
-Interferenz und Beugung
Lecture notesThe lecture follows the book "Physik für Wissenschaftler und Ingenieure" by Paul A. Tipler and and Gene P. Mosca.
LiteraturePaul A. Tipler and Gene P. Mosca, "Physik für Wissenschaftler und Ingenieure", Springer Spektrum.
Prerequisites / NoticePrerequisites: Mathematics I
402-0240-00LAdvanced Physics Laboratory II Information Restricted registration - show details
Prerequiste: "Advanced Physics Laboratory I" completed. Before enroling in "Advanced Physics Laboratory II", please enrol in "Advanced Physics Laboratory I".

Enrol at most once in the course of the Bachelor programme!
9 credits18PC. Grab, T. M. Ihn
AbstractThis laboratory course provides basic training of experimental skills. These are experimental design, implementation, measurement, data analysis and interpretation, as well as error analysis. The experimental work has to be complemented by a concise written report, which trains the scientific writing skills.
Manuals for the individual experiments are available in English.
ObjectiveStudents learn to independently perform advanced experiments and document them scientifically correct.
The following aspects are emphasized:
- understanding complicated physical phenomena
- structured approach to experiments with complex instruments
- various practical aspects of experimenting and determining uncertainties
- learning the relevant statistical methods for data analysis
- interpretation of measurements and uncertainties
- describing the experiments and the results in a scientifically proper manner, in direct analogy to publishing
- ethical aspects of experimental research and scientific communication
ContentWe offer experiments covering the following topics:
Basic topics from mechanics, optics, thermodynamics, electromagnetism and electronics; as well as central topics from nuclear and particle physics, quantum electronics, quantum mechanics, solid state physics and astrophysics.
Lecture notesInstructions for experiments are available in English.
Prerequisites / NoticeFrom a variety of over 50 experiments, students have to perform 4 experiments covering different topics. The experimental work is complemented by writing a scientific report.
402-0241-00LAdvanced Physics Laboratory I Information Restricted registration - show details
IMPORTANT: You may not enrol repeatedly in the course of the Bachelor programme.
9 credits18PC. Grab, T. M. Ihn
AbstractThis laboratory course provides basic training of experimental skills. These are experimental design, implementation, measurement, data analysis and interpretation, as well as error analysis. The experimental work has to be complemented by a concise written report, which trains the scientific writing skills.
Manuals for the individual experiments are available in English.
ObjectiveStudents learn to independently perform advanced experiments and document them scientifically correct.
The following aspects are emphasized:
- understanding complicated physical phenomena
- structured approach to experiments with complex instruments
- various practical aspects of experimenting and determining uncertainties
- learning the relevant statistical methods for data analysis
- interpretation of measurements and uncertainties
- describing the experiments and the results in a scientifically proper manner, in direct analogy to publishing
- ethical aspects of experimental research and scientific communication
ContentWe offer experiments covering the following topics:
Basic topics from mechanics, optics, thermodynamics, electromagnetism and electronics; as well as central topics from nuclear and particle physics, quantum electronics, quantum mechanics, solid state physics and astrophysics.
Lecture notesInstructions for experiments are available in English.
Prerequisites / NoticeFrom a variety of over 50 experiments, students have to perform 4 experiments covering different topics. The experimental work is complemented by writing a scientific report.
402-0530-00LMesoscopic Systems0 credits1ST. M. Ihn
AbstractResearch colloquium
Objective
402-0596-00LElectronic Transport in Nanostructures Information 6 credits2V + 1UT. M. Ihn
AbstractThe lecture discusses basic quantum phenomena occurring in electron transport through nanostructures: Drude theory, Landauer-Buttiker theory, conductance quantization, Aharonov-Bohm effect, weak localization/antilocalization, shot noise, integer and fractional quantum Hall effects, tunneling transport, Coulomb blockade, coherent manipulation of charge- and spin-qubits.
Objective
Lecture notesThe lecture is based on the book:
T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport, ISBN 978-0-19-953442-5, Oxford University Press, 2010.
Prerequisites / NoticeA solid basis in quantum mechanics, electrostatics, quantum statistics and in solid state physics is required.

Students of the Master in Micro- and Nanosystems should at least have attended the lecture by David Norris, Introduction to quantum mechanics for engineers. They should also have passed the exam of the lecture Semiconductor Nanostructures.