Roland Riek: Catalogue data in Autumn Semester 2016 |
Name | Prof. Dr. Roland Riek |
Field | Physical Chemistry |
Address | Inst. Mol. Phys. Wiss. ETH Zürich, HCI F 225 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telephone | +41 44 632 61 39 |
roland.riek@phys.chem.ethz.ch | |
Department | Chemistry and Applied Biosciences |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
529-0432-00L | Physical Chemistry IV: Magnetic Resonance | 4 credits | 3G | B. H. Meier, M. Ernst, G. Jeschke, R. Riek | |
Abstract | Theoretical foundations of magnetic resonance (NMR,EPR) and selected applications. | ||||
Learning objective | Introduction to magnetic resonance in isotropic and anisotropic phase. | ||||
Content | The course gives an introduction to magnetic resonance spectroscopy (NMR and EPR) in liquid, liquid crystalline and solid phase. It starts from a classical description in the framework of the Bloch equations. The implications of chemical exchange are studied and two-dimensional exchange spectroscopy is introduced. An introduction to Fourier spectroscopy in one and two dimensions is given and simple 'pulse trickery' is described. A quantum-mechanical description of magnetic resonance experiments is introduced and the spin Hamiltonian is derived. The chemical shift term as well as the scalar, dipolar and quadrupolar terms are discussed. The product-operator formalism is introduced and various experiments are described, e.g. polarization transfer. Applications in chemistry, biology, physics and medicine, e.g. determination of 3D molecular structure of dissolved molecules, determination of the structure of paramagnetic compounds and imaging (MRI) are presented. | ||||
Lecture notes | handed out in the lecture (in english) | ||||
Literature | see http://www.ssnmr.ethz.ch/education/PC_IV_Lecture | ||||
529-0449-00L | Spectroscopy | 13 credits | 13P | E. C. Meister, G. Jeschke, B. H. Meier, F. Merkt, R. Riek, R. Signorell, H. J. Wörner | |
Abstract | Laboratory experiments to acquire a profound knowledge of spectroscopical methods and techniques in chemistry. Evaluation and visualization of measurement data. Writing lab reports. | ||||
Learning objective | Laboratory experiments to acquire a profound knowledge of spectroscopical methods and techniques in chemistry. Evaluation and visualization of measurement data. Writing lab reports. | ||||
Content | Laboratory experiments: UV/VIS spectroscopy, luminescence spectroscopy, FT infrared spectroscopy, dye laser, light diffraction and refraction, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), FT nuclear magnetic resonance spectroscopy (NMR), electron paramagnetic resonance spectroscopy (EPR), atomic force microscopy (AFM), Fourier transform methods. | ||||
Lecture notes | Detailed documentations to each experiment will be handed out. E. Meister, Grundpraktikum Physikalische Chemie, 2. Auflage, vdf Hochschulverlag an der ETH, Zürich 2012. | ||||
Prerequisites / Notice | Praktikum Physikalische und Analytische Chemie (529-0054-00) or Praktikum Physikalische Chemie (529-0054-01). | ||||
529-0499-00L | Physical Chemistry | 1 credit | 1K | B. H. Meier, G. Jeschke, F. Merkt, M. Quack, M. Reiher, R. Riek, S. Riniker, T. Schmidt, R. Signorell, H. J. Wörner | |
Abstract | Institute-Seminar covering current research Topics in Physical Chemistry | ||||
Learning objective | |||||
529-1023-00L | Physical Chemistry I (for Biology and Pharmacy) | 3 credits | 2V + 1U | R. Riek, H. P. Lüthi | |
Abstract | The laws of thermodynamics: empirical temperature, energy, entropy. Models and standard states: ideal gases, ideal solutions and mixtures, activity, thermodynamical tables. Reaction thermodynamics: chemical potential, thermodynamical parameters of reaction, equilibrium conditions and their temperature and pressure dependence, biochemical reactions, surface effects, colligative properties. | ||||
Learning objective | Understanding the fundamental thermodynamical properties of chemical and biological systems. | ||||
Content | he laws of thermodynamics: empirical temperature, energy, entropy. Models and standard states: ideal gases, ideal solutions and mixtures, activity, thermodynamical tables. Reaction thermodynamics: chemical potential, thermodynamical parameters of reaction, equilibrium conditions and their temperature and pressure dependence, biochemical reactions, surface effects, colligative properties. | ||||
Lecture notes | in process, will be distributed at the beginning of the first lecture | ||||
Literature | 1) Atkins, P.W., 1999, Physical Chemistry, Oxford University Press, 6th ed., 1999. 2) Moore, W.J., 1990: Grundlagen der physikalischen Chemie, W. de Gruyter, Berlin. 3) Adam, G., Läuger, P., Stark, G., 1988: Physikalische Chemie und Biophysik, 2. Aufl., Springer Verlag, Berlin. | ||||
Prerequisites / Notice | Prerequisite: mathematics I+II, functions of multiple variables, partial derivatives. |