Detlef Günther: Catalogue data in Spring Semester 2019 |
Name | Prof. Dr. Detlef Günther |
Name variants | Detlef Günther Detlef Guenther Detlef Gunther |
Field | Spurenelement- und Mikroanalytik |
Address | Spurenelement- und Mikroanalytik ETH Zürich, HCI G 113 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telephone | +41 44 632 46 87 |
guenther@inorg.chem.ethz.ch | |
Department | Chemistry and Applied Biosciences |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
529-0051-AAL | Analytical Chemistry I Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. All other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 3 credits | 6R | D. Günther, R. Zenobi | |
Abstract | Introduction into the most important spectroscopical methods and their applications to gain structural information. | ||||
Learning objective | Knowledge about the necessary theoretical background of spectroscopical methods and their practical applications | ||||
Content | Application oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods: Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements. NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling. IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy. UV/VIS spectroscopy: Basics, interpretation of electron spectra. Circular dichroism (CD) und optical rotation dispersion (ORD). Atomic absorption, emission, and X-ray fluorescence spectroscopy: Basics, sample preparation. | ||||
Lecture notes | Script will be provided for factory costs. | ||||
Literature | - R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998; - D. A. Skoog und J. J. Leary, Instrumentelle Analytik, Springer, Heidelberg, 1996; - M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995 - E. Pretsch, P. Bühlmann, C. Affolter, M. Badertscher, Spektroskopische Daten zur Strukturaufklärung organischer verbindungen, 4. Auflage, Springer, Berlin/Heidelberg, 2001- Kläntschi N., Lienemann P., Richner P., Vonmont H: Elementanalytik. Instrumenteller Nachweis und Bestimmung von Elementen und deren Verbindungen. Spektrum Analytik, 1996, Hardcover, 339 S., ISBN 3-86025-134-1. | ||||
Prerequisites / Notice | Excercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounts" (4th semester) is recommended. | ||||
529-0058-AAL | Analytical Chemistry II Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 3 credits | 6R | D. Günther, M.‑O. Ebert, P. Lienemann, G. Schwarz, R. Zenobi | |
Abstract | Enhanced knowledge about the elemental analysis and spectrocopical techniques with close relation to practical applications. This course is based on the knowledge from analytical chemistry I. Separation methods are included. | ||||
Learning objective | Use and applications of the elemental analysis and spectroscopical knowledge to solve relevant analytical problems. | ||||
Content | Combined application of spectroscopic methods for structure determination, and practical application of element analysis. More complex NMR methods: recording techniques, application of exchange phenomena, double resonance, spin-lattice relaxation, nuclear Overhauser effect, applications of experimental 2d and multipulse NMR spectroscopy, shift reagents. Application of chromatographic and electrophoretic separation methods: basics, working technique, quality assessment of a separation method, van-Deemter equation, gas chromatography, liquid chromatography (HPLC, ion chromatography, gel permeation, packing materials, gradient elution, retention index), electrophoresis, electroosmotic flow, zone electrophoresis, capillary electrophoresis, isoelectrical focussing, electrochromatography, 2d gel electrophoresis, SDS-PAGE, field flow fractionation, enhanced knowledge in atomic absorption spectroscopy, atomic emission spectroscopy, X-ray fluorescence spectroscopy, ICP-OES, ICP-MS. | ||||
Literature | general: R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998; XRF: R. Schramm, X-Ray Fluorescence Analysis: Practical and Easy, Fluxana, Kleve, 2012; ICP-MS: R. Thomas, Practical Guide to ICP-MS - A Tutorial for beginners, 3rd Edition, CRC Press, Taylor & Francis Group, Boca Raton, 2013 (especially: chapters 1-15, 19 and 21). Separation methods: S. Ahuja (Ed.), Chromatography and Separation Science, Volume 4 of series "Separation Science and Technology", Elsevier Academic Press, San Diego, 2003. K. Robards, P. R. Haddad, and P. E. Jackson, Principle and Practise of Modern Chromatographic Methods, Academic Press, London, 1994. F. Foret, L. Krivankova, and P. Bocek, Capillary Zone Electrophoresis, VCH, Weinheim (1993) | ||||
Prerequisites / Notice | None. | ||||
529-0058-00L | Analytical Chemistry II | 3 credits | 3G | D. Günther, T. Bucheli, M.‑O. Ebert, P. Lienemann, G. Schwarz | |
Abstract | Enhanced knowledge about the elemental analysis and spectrocopical techniques with close relation to practical applications. This course is based on the knowledge from analytical chemistry I. Separation methods are included. | ||||
Learning objective | Use and applications of the elemental analysis and spectroscopical knowledge to solve relevant analytical problems. | ||||
Content | Combined application of spectroscopic methods for structure determination, and practical application of element analysis. More complex NMR methods: recording techniques, application of exchange phenomena, double resonance, spin-lattice relaxation, nuclear Overhauser effect, applications of experimental 2d and multipulse NMR spectroscopy, shift reagents. Application of chromatographic and electrophoretic separation methods: basics, working technique, quality assessment of a separation method, van-Deemter equation, gas chromatography, liquid chromatography (HPLC, ion chromatography, gel permeation, packing materials, gradient elution, retention index), electrophoresis, electroosmotic flow, zone electrophoresis, capillary electrophoresis, isoelectrical focussing, electrochromatography, 2d gel electrophoresis, SDS-PAGE, field flow fractionation, enhanced knowledge in atomic absorption spectroscopy, atomic emission spectroscopy, X-ray fluorescence spectroscopy, ICP-OES, ICP-MS. | ||||
Lecture notes | Script will be available | ||||
Literature | Literature will be within the script. | ||||
Prerequisites / Notice | Exercises for spectra interpretation are part of the lecture. In addition the lecture 529-0289-00 "Instrumentalanalyse organischer Verbindungen" (4th semester) is recommended. Prerequisite: 529-0051-00 "Analytische Chemie I" (3rd semester) | ||||
529-0169-00L | Instrumental Analysis | 0 credits | 2S | D. Günther | |
Abstract | Group seminar on elemental analysis and isotope ratio determinations using various plasma sources | ||||
Learning objective | Group seminar on elemental analysis and isotope ratio determinations using various plasma sources | ||||
Content | Developments in plasma mass spectrometry and alternative plasma sources | ||||
529-0199-00L | Inorganic and Organometallic Chemistry | 0 credits | 2K | H. Grützmacher, C. Copéret, D. Günther, M. Kovalenko, A. Mezzetti, A. Togni | |
Abstract | |||||
Learning objective |