Hans-Andrea Loeliger: Katalogdaten im Herbstsemester 2017

NameHerr Prof. Dr. Hans-Andrea Loeliger
LehrgebietSignalverarbeitung
Adresse
Inst. f. Signal-u.Inf.verarbeitung
ETH Zürich, ETF E 101
Sternwartstrasse 7
8092 Zürich
SWITZERLAND
Telefon+41 44 632 27 65
E-Mailloeliger@isi.ee.ethz.ch
URLhttp://people.ee.ethz.ch/~loeliger/
DepartementInformationstechnologie und Elektrotechnik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
227-0101-AALDiscrete-Time and Statistical Signal Processing
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
6 KP8RH.‑A. Loeliger
KurzbeschreibungThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.
LernzielThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.
Inhalt1. Discrete-time linear systems and filters:
state-space realizations, z-transform and spectrum,
decimation and interpolation, digital filter design,
stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective:
probability, random variables, discrete-time stochastic processes;
detection and estimation: MAP, ML, Bayesian MMSE, LMMSE;
Wiener filter, LMS adaptive filter, Viterbi algorithm.
SkriptLecture Notes.
227-0101-00LDiscrete-Time and Statistical Signal Processing6 KP4GH.‑A. Loeliger
KurzbeschreibungThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.
LernzielThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.
Inhalt1. Discrete-time linear systems and filters:
state-space realizations, z-transform and spectrum,
decimation and interpolation, digital filter design,
stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective:
probability, random variables, discrete-time stochastic processes;
detection and estimation: MAP, ML, Bayesian MMSE, LMMSE;
Wiener filter, LMS adaptive filter, Viterbi algorithm.
SkriptLecture Notes
227-0427-00LSignal and Information Processing: Modeling, Filtering, Learning6 KP4GH.‑A. Loeliger
KurzbeschreibungFundamentals in signal processing, detection/estimation, and machine learning.
I. Linear signal representation and approximation: Hilbert spaces, LMMSE estimation, regularization and sparsity.
II. Learning linear and nonlinear functions and filters: kernel methods, neural networks.
III. Structured statistical models: hidden Markov models, factor graphs, Kalman filter, parameter estimation.
LernzielThe course is an introduction to some basic topics in signal processing, detection/estimation theory, and machine learning.
InhaltPart I - Linear Signal Representation and Approximation: Hilbert spaces, least squares and LMMSE estimation, projection and estimation by linear filtering, learning linear functions and filters, L2 regularization, L1 regularization and sparsity, singular-value decomposition and pseudo-inverse, principal-components analysis.
Part II - Learning Nonlinear Functions: fundamentals of learning, neural networks, kernel methods.
Part III - Structured Statistical Models and Message Passing Algorithms: hidden Markov models, factor graphs, Gaussian message passing, Kalman filter and recursive least squares, Monte Carlo methods, parameter estimation, expectation maximization, sparse Bayesian learning.
SkriptLecture notes.
Voraussetzungen / BesonderesPrerequisites:
- local bachelors: course "Discrete-Time and Statistical Signal Processing" (5. Sem.)
- others: solid basics in linear algebra and probability theory