Hans-Andrea Loeliger: Katalogdaten im Frühjahrssemester 2020

NameHerr Prof. Dr. Hans-Andrea Loeliger
LehrgebietSignalverarbeitung
Adresse
Inst. f. Signal-u.Inf.verarbeitung
ETH Zürich, ETF E 101
Sternwartstrasse 7
8092 Zürich
SWITZERLAND
Telefon+41 44 632 27 65
E-Mailloeliger@isi.ee.ethz.ch
URLhttp://people.ee.ethz.ch/~loeliger/
DepartementInformationstechnologie und Elektrotechnik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
227-0085-12LProjekte & Seminare: Electronic Circuits & Signals Exploration Laboratory Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
2 KP1PH.‑A. Loeliger
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielAs everyday electronic circuits have transitioned into integrated circuits, they have become increasingly difficult to examine and tinker with. As a result, students become less exposed to basic analog electronic circuits and their fundamental operating principles. At university level, bachelor classes in analog circuits and electronics provide rigorous theoretical insights but are typically focused on linearised operating behaviour.

The goal of this lab course is for the students to enhance their understanding on how basic analog electronic circuits work, or perhaps don't work, and provide enough practical experience for the students to feel at ease using transistors, resistors, capacitances, diodes etc., to create working circuits.

For example, students create circuits that make physical quantities audible. Students are encourage to realise their own circuit ideas.
227-0101-AALDiscrete-Time and Statistical Signal Processing Information
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
6 KP8RH.‑A. Loeliger
KurzbeschreibungThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.
LernzielThe course introduces some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme is the stable and robust "inversion" of a linear filter.
Inhalt1. Discrete-time linear systems and filters:
state-space realizations, z-transform and spectrum,
decimation and interpolation, digital filter design,
stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective:
probability, random variables, discrete-time stochastic processes;
detection and estimation: MAP, ML, Bayesian MMSE, LMMSE;
Wiener filter, LMS adaptive filter, Viterbi algorithm.
SkriptLecture Notes
227-0418-00LAlgebra and Error Correcting Codes Information 6 KP4GH.‑A. Loeliger
KurzbeschreibungThe course is an introduction to error correcting codes covering both classical algebraic codes and modern iterative decoding. The course includes a self-contained introduction of the pertinent basics of "abstract" algebra.
LernzielThe course is an introduction to error correcting codes covering both classical algebraic codes and modern iterative decoding. The course includes a self-contained introduction of the pertinent basics of "abstract" algebra.
InhaltError correcting codes: coding and modulation, linear codes, Hamming space codes, Euclidean space codes, trellises and Viterbi decoding, convolutional codes, factor graphs and message passing algorithms, low-density parity check codes, turbo codes, polar codes, Reed-Solomon codes.

Algebra: groups, rings, homomorphisms, quotient groups, ideals, finite fields, vector spaces, polynomials.
SkriptLecture Notes (english)
401-5680-00LFoundations of Data Science Seminar Information 0 KPP. L. Bühlmann, A. Bandeira, H. Bölcskei, J. M. Buhmann, T. Hofmann, A. Krause, A. Lapidoth, H.‑A. Loeliger, M. H. Maathuis, N. Meinshausen, G. Rätsch, C. Uhler, S. van de Geer, F. Yang
KurzbeschreibungResearch colloquium
Lernziel