Peter L. Bühlmann: Katalogdaten im Herbstsemester 2023 |
Name | Herr Prof. Dr. Peter L. Bühlmann |
Lehrgebiet | Mathematik |
Adresse | Seminar für Statistik (SfS) ETH Zürich, HG G 17 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 73 38 |
Fax | +41 44 632 12 28 |
peter.buehlmann@stat.math.ethz.ch | |
URL | http://stat.ethz.ch/~peterbu |
Departement | Mathematik |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-3627-DRL | High-Dimensional Statistics Only for ZGSM (ETH D-MATH and UZH I-MATH) doctoral students. The latter need to register at myStudies and then send an email to info@zgsm.ch with their name, course number and student ID. Please see https://zgsm.math.uzh.ch/index.php?id=forum0 | 2 KP | 2V | P. L. Bühlmann | ||||||||||||||||||||
Kurzbeschreibung | "High-Dimensional Statistics" deals with modern methods and theory for statistical inference when the number of unknown parameters is of much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed. | |||||||||||||||||||||||
Lernziel | Knowledge of methods and basic theory for high-dimensional statistical inference | |||||||||||||||||||||||
Inhalt | Lasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and l1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling | |||||||||||||||||||||||
Literatur | Peter Bühlmann and Sara van de Geer (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Verlag. ISBN 978-3-642-20191-2. | |||||||||||||||||||||||
Voraussetzungen / Besonderes | Knowledge of basic concepts in probability theory, and intermediate knowledge of statistics (e.g. a course in linear models or computational statistics). | |||||||||||||||||||||||
401-3627-00L | High-Dimensional Statistics | 4 KP | 2V | P. L. Bühlmann | ||||||||||||||||||||
Kurzbeschreibung | "High-Dimensional Statistics" deals with modern methods and theory for statistical inference when the number of unknown parameters is of much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed. | |||||||||||||||||||||||
Lernziel | Knowledge of methods and basic theory for high-dimensional statistical inference | |||||||||||||||||||||||
Inhalt | Lasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and l1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling | |||||||||||||||||||||||
Literatur | Peter Bühlmann and Sara van de Geer (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Verlag. ISBN 978-3-642-20191-2. | |||||||||||||||||||||||
Voraussetzungen / Besonderes | Knowledge of basic concepts in probability theory, and intermediate knowledge of statistics (e.g. a course in linear models or computational statistics). | |||||||||||||||||||||||
401-5620-00L | Research Seminar on Statistics | 0 KP | 1K | P. L. Bühlmann, N. Meinshausen, J. Peters, A. Bandeira, R. Furrer, L. Held, T. Hothorn, D. Kozbur, M. Wolf | ||||||||||||||||||||
Kurzbeschreibung | Research colloquium | |||||||||||||||||||||||
Lernziel | ||||||||||||||||||||||||
401-5640-00L | ZüKoSt: Seminar on Applied Statistics | 0 KP | 1K | M. Kalisch, F. Balabdaoui, A. Bandeira, P. L. Bühlmann, R. Furrer, L. Held, T. Hothorn, M. Mächler, L. Meier, N. Meinshausen, J. Peters, M. Robinson, C. Strobl | ||||||||||||||||||||
Kurzbeschreibung | Etwa 3 Vorträge zur angewandten Statistik. | |||||||||||||||||||||||
Lernziel | Kennenlernen von statistischen Methoden in ihrer Anwendung in verschiedenen Anwendungsgebieten. | |||||||||||||||||||||||
Inhalt | In etwa 3 Einzelvorträgen pro Semester werden Methoden der Statistik einzeln oder überblicksartig vorgestellt, oder es werden Probleme und Problemtypen aus einzelnen Anwendungsgebieten besprochen. | |||||||||||||||||||||||
Voraussetzungen / Besonderes | Dies ist keine Vorlesung. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben. Nach besonderem Programm: http://stat.ethz.ch/events/zukost Lehrsprache ist Englisch oder Deutsch je nach ReferentIn. | |||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||
401-5680-00L | Foundations of Data Science Seminar | 0 KP | P. L. Bühlmann, A. Bandeira, H. Bölcskei, J. Peters, F. Yang | |||||||||||||||||||||
Kurzbeschreibung | Research colloquium | |||||||||||||||||||||||
Lernziel |