Peter L. Bühlmann: Catalogue data in Spring Semester 2021

Name Prof. Dr. Peter L. Bühlmann
FieldMathematik
Address
Seminar für Statistik (SfS)
ETH Zürich, HG G 17
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telephone+41 44 632 73 38
Fax+41 44 632 12 28
E-mailpeter.buehlmann@stat.math.ethz.ch
URLhttp://stat.ethz.ch/~peterbu
DepartmentMathematics
RelationshipFull Professor

NumberTitleECTSHoursLecturers
401-3620-21LStudent Seminar in Statistics: Statistical Network Modeling Information Restricted registration - show details
Number of participants limited to 48.
Mainly for students from the Mathematics Bachelor and Master Programmes who, in addition to the introductory course unit 401-2604-00L Probability and Statistics, have heard at least one core or elective course in statistics. Also offered in the Master Programmes Statistics resp. Data Science.
4 credits2SP. L. Bühlmann, M. Azadkia
AbstractNetwork models can be used to analyze non-iid data because their structure incorporates interconnectedness between the individuals. We introduce networks, describe them mathematically, and consider applications.
Learning objectiveNetwork models can be used to analyze non-iid data because their structure incorporates interconnectedness between the individuals. The participants of the seminar acquire knowledge to formulate and analyze network models and to apply them in examples.
LiteratureE. D. Kolaczyk and G. Csárdi. Statistical analysis of network data with R. Springer, Cham, Switzerland, second edition, 2020.

Tianxi Li, Elizaveta Levina, and Ji Zhu. Network cross-validation by edge sampling, 2020. Preprint arXiv:1612.04717.

Tianxi Li, Elizaveta Levina, and Ji Zhu. Community models for partially observed networks from surveys, 2020. Preprint arXiv:2008.03652.

Tianxi Li, Elizaveta Levina, and Ji Zhu. Prediction Models for Network-Linked Data, 2018. Preprint arXiv:1602.01192.
Prerequisites / NoticeEvery class will consist of an oral presentation highlighting key ideas of selected book chapters by a pair of students. Another two students will be responsible for asking questions during the presentation and providing a discussion of the the presented concepts and ideas, including pros+cons, at the end. Finally, an additional two students are responsible for giving an evaluation on the quality of the presentations/discussions and provide constructive feedback for improvement.
401-5620-00LResearch Seminar on Statistics Information 0 credits1KP. L. Bühlmann, M. H. Maathuis, N. Meinshausen, S. van de Geer, A. Bandeira, R. Furrer, L. Held, T. Hothorn, D. Kozbur, M. Wolf
AbstractResearch colloquium
Learning objective
401-5640-00LZüKoSt: Seminar on Applied Statistics Information 0 credits1KM. Kalisch, F. Balabdaoui, A. Bandeira, P. L. Bühlmann, R. Furrer, L. Held, T. Hothorn, M. H. Maathuis, M. Mächler, L. Meier, N. Meinshausen, M. Robinson, C. Strobl, S. van de Geer
Abstract5 to 6 talks on applied statistics.
Learning objectiveKennenlernen von statistischen Methoden in ihrer Anwendung in verschiedenen Gebieten, besonders in Naturwissenschaft, Technik und Medizin.
ContentIn 5-6 Einzelvorträgen pro Semester werden Methoden der Statistik einzeln oder überblicksartig vorgestellt, oder es werden Probleme und Problemtypen aus einzelnen Anwendungsgebieten besprochen.
3 bis 4 der Vorträge stehen in der Regel unter einem Semesterthema.
Lecture notesBei manchen Vorträgen werden Unterlagen verteilt.
Eine Zusammenfassung ist kurz vor den Vorträgen im Internet unter http://stat.ethz.ch/talks/zukost abrufbar.
Ankündigunen der Vorträge werden auf Wunsch zugesandt.
Prerequisites / NoticeDies ist keine Vorlesung. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben.
Nach besonderem Programm. Koordinator M. Kalisch, Tel. 044 632 3435
Lehrsprache ist Englisch oder Deutsch je nach ReferentIn.
Course language is English or German and may depend on the speaker.
401-5680-00LFoundations of Data Science Seminar Information 0 creditsP. L. Bühlmann, A. Bandeira, H. Bölcskei, J. M. Buhmann, T. Hofmann, A. Krause, A. Lapidoth, H.‑A. Loeliger, M. H. Maathuis, N. Meinshausen, G. Rätsch, S. van de Geer, F. Yang
AbstractResearch colloquium
Learning objective