Peter L. Bühlmann: Catalogue data in Spring Semester 2015

Name Prof. Dr. Peter L. Bühlmann
FieldMathematik
Address
Seminar für Statistik (SfS)
ETH Zürich, HG G 17
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telephone+41 44 632 73 38
Fax+41 44 632 12 28
E-mailpeter.buehlmann@stat.math.ethz.ch
URLhttp://stat.ethz.ch/~peterbu
DepartmentMathematics
RelationshipFull Professor

NumberTitleECTSHoursLecturers
401-3620-15LSeminar in Statistics: High-Dimensional Statistics Restricted registration - show details
Number of participants limited to 24.

Mainly for students from the Mathematics Bachelor and Master Programmes who, in addition to the introductory course unit 401-2604-00L Probability and Statistics, have heard at least one core or elective course in statistics
4 credits2SN. Meinshausen, P. L. Bühlmann, M. H. Maathuis, S. van de Geer
Abstract
Learning objectiveThe seminar familiarizes students with the basic techniques of
high-dimensional data analysis. Both theoretical concepts and practical
implementation of methods will be discussed. Students will
learn how to study a given topic from a book or a research paper
in groups of two and how to prepare an oral presentation which is
understandable to other students in the seminar. To achieve this goal,
students meet twice. one and two weeks before their presentation,
with an assistant or one of the lecturers.
Prerequisites / NoticeWe require at least one course in statistics in addition to the 4th
semester course Introduction to Probability and Statistics.

Topics will be assigned during the first meeting.
401-3632-00LComputational Statistics Information 10 credits3V + 2UM. Mächler, P. L. Bühlmann
Abstract"Computational Statistics" deals with modern methods of data analysis (aka "data science") for prediction and inference. An overview of existing methodology is provided and also by the exercises, the student is taught to choose among possible models and about their algorithms and to validate them using graphical methods and simulation based approaches.
Learning objectiveGetting to know modern methods of data analysis for prediction and inference.
Learn to choose among possible models and about their algorithms.
Validate them using graphical methods and simulation based approaches.
ContentCourse Synopsis:
multiple regression, nonparametric methods for regression and classification (kernel estimates, smoothing splines, regression and classification trees, additive models, projection pursuit, neural nets, ridging and the lasso, boosting). Problems of interpretation, reliable prediction and the curse of dimensionality are dealt with using resampling, bootstrap and cross validation.
Details are available via http://stat.ethz.ch/education/ .

Exercises will be based on the open-source statistics software R (http://www.R-project.org/). Emphasis will be put on applied problems. Active participation in the exercises is strongly recommended.
More details are available via the webpage http://stat.ethz.ch/education/ (-> "Computational Statistics").
Lecture noteslecture notes are available online; see
http://stat.ethz.ch/education/ (-> "Computational Statistics").
Literature(see the link above, and the lecture notes)
Prerequisites / NoticeBasic "applied" mathematical calculus and linear algebra.
At least one semester of (basic) probability and statistics.
401-5000-00LZurich Colloquium in Mathematics Information 0 creditsP. L. Bühlmann, T. Kappeler, A. Kresch, S. Mishra, R. Pandharipande, V. Schroeder
Abstract
Learning objective
401-5620-00LResearch Seminar on Statistics Information 0 credits2KP. L. Bühlmann, L. Held, T. Hothorn, M. H. Maathuis, N. Meinshausen, S. van de Geer, M. Wolf
AbstractResearch colloquium
Learning objective
401-5640-00LZüKoSt: Seminar on Applied Statistics Information 0 credits1KM. Kalisch, P. L. Bühlmann, L. Held, T. Hothorn, M. H. Maathuis, M. Mächler, L. Meier, N. Meinshausen, M. Robinson, C. Strobl, S. van de Geer
Abstract5 to 6 talks on applied statistics.
Learning objectiveKennenlernen von statistischen Methoden in ihrer Anwendung in verschiedenen Gebieten, besonders in Naturwissenschaft, Technik und Medizin.
ContentIn 5-6 Einzelvorträgen pro Semester werden Methoden der Statistik einzeln oder überblicksartig vorgestellt, oder es werden Probleme und Problemtypen aus einzelnen Anwendungsgebieten besprochen.
3 bis 4 der Vorträge stehen in der Regel unter einem Semesterthema.
Lecture notesBei manchen Vorträgen werden Unterlagen verteilt.
Eine Zusammenfassung ist kurz vor den Vorträgen im Internet unter http://stat.ethz.ch/talks/zukost abrufbar.
Ankündigunen der Vorträge werden auf Wunsch zugesandt.
Prerequisites / NoticeDies ist keine Vorlesung. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben.
Nach besonderem Programm. Koordinator M. Kalisch, Tel. 044 632 3435
Lehrsprache ist Englisch oder Deutsch je nach ReferentIn.
Course language is English or German and may depend on the speaker.