Name | Herr Prof. Dr. Heini Wernli |
Lehrgebiet | Atmosphärendynamik |
Adresse | Institut für Atmosphäre und Klima ETH Zürich, CHN M 12.1 Universitätstrasse 16 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 54 80 |
heini.wernli@env.ethz.ch | |
Departement | Umweltsystemwissenschaften |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
061-0101-00L | Climate / Water / Soil | 2 KP | 3G | H. Joos, R. Kretzschmar, R. Weingartner, A. Carminati, S. Dötterl, M. G. Fellin, A. Frossard, T. Galí-Izard, N. Gruber, V. Picotti, S. Schemm, J. Schwaab, C. Steger, H. Wernli | |||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Lectures, exercises and excursions serve as an introduction to atmospheric sciences, soil science and hydrology. Students gain a broad vision of the cutting edge topics that are being researched and studied at the Department of Environmental Systems Science at ETH, Eawag, WSL a.o. This will be the base for a future dialog between the field of landscape architecture and the field of sciences. | ||||||||||||||||||||||||||||||||||||||
Lernziel | Students acquire basic knowledge in atmospheric sciences, hydrology and soil science: - Understanding basic chemical and physical processes in the atmosphere that influence weather and climate - Fundamentals about the classification of soils, soil-forming processes, physical and chemical soil properties, soil biology and ecology, soil degradation and protection - Knowledge of water balance, principles of integral water management and climatic factors in the field of hydrology Students develop an understanding of the relevance of these topics in the field of landscape architecture. Temporal and physical scale, research methods, units of measurement, lexicon, modes of representation and critical literature form the framework for the joint discourse. | ||||||||||||||||||||||||||||||||||||||
Inhalt | The course unit consists of the three courses "Climate", "Soil" and "Water", which are organized in modules. Module 1 “Climate”, 25.–28.09.2023 - Atmospheric dynamics: weather conditions, precipitation formation, weather forecast - Carbon Cycle: atmospheric CO2 concentrations and its interaction with the physical climate system - Land-climate dynamics: interaction between the land surface and the climate system - Hydrology and water cycle: extreme precipitation, influence of climate change on the cryosphere - Introduction to geology: formation of rocks, geologic times, structural geology Module 2 “Soil”, 2.10.–5.10.23 - Introduction to soils: definition, function, formation, classification and mapping - Soil physics: soil texture, soil structure, soil water potentials, hydraulic conductivity - Soil chemistry and fertility: clay minerals and oxides, cation exange capacity, soil pH, essential plant nutrients - Soil biology and ecology: soil fauna and microflora, fungi, bacteria, food web, organic matter - Soil degradation and threats to soil resources: erosion, compactation, sealing, contamination, salinization Module 3 “Water”, 09.10.–12.10.2023 Basics: - Water supply: water balance, groundwater, water quality (water protection) - River restoration - Flooding, evapotranspiration/cooling of landscapes - Hydropower (everything is managed - lake levels, water flows, pumping) - hydrology in the anthropocene - Water management and storage | ||||||||||||||||||||||||||||||||||||||
Skript | Course material will be provided. | ||||||||||||||||||||||||||||||||||||||
Literatur | The course material includes a reading list. | ||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The courses "Climate", "Water" and "Soil" are organized with the Fundamental Studio I as joint one-week modules. The weekly schedules will be provided with the course materials. Module 1 "Climate", 25.–28.09.2023 Module 2 "Soil", 2.10.–5.10.23 Module 3 "Water", 09.10.–12.10.2023 - The courses are held in English - The written session examination covers all three courses "Climate", "Soil" and "Water". | ||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| ||||||||||||||||||||||||||||||||||||||
151-8007-00L | Urban Physics | 3 KP | 3G | Y. Zhao, D. W. Brunner, A. Rubin, C. Steger, D. A. Strebel, H. Wernli, J. M. Wunderli | |||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Urban physics: wind, wind comfort, pollutant dispersion, natural ventilation, driving rain, heat islands, climate change and weather conditions, urban acoustics and energy use in the urban context. | ||||||||||||||||||||||||||||||||||||||
Lernziel | - Basic knowledge of the global climate and the local microclimate around buildings - Impact of urban environment on wind, ventilation, rain, pollutants, acoustics and energy, and their relation to comfort, durability, air quality and energy demand - Application of urban physics concepts in urban design | ||||||||||||||||||||||||||||||||||||||
Inhalt | - Climate Change. The Global Picture: global energy balance, global climate models, the IPCC process. Towards regional climate scenarios: role of spatial resolution, overview of approaches, hydrostatic RCMs, cloud-resolving RCMs - Urban micro climate and comfort: urban heat island effect, wind flow and radiation in the built environment, convective heat transport modelling, heat balance and ventilation of urban spaces - impact of morphology, outdoor wind comfort, outdoor thermal comfort, - Urban energy and urban design. Energy performance of building quarters and cities, decentralized urban energy production and storage technologies, district heating networks, optimization of energy consumption at district level, effect of the micro climate, urban heat islands, and climate change on the energy performance of buildings and building blocks. - Wind driving rain (WDR): WDR phenomena, WDR experimental and modeling, wind blocking effect, applications and moisture durability - Pollutant dispersion. pollutant cycle : emission, transport and deposition, air quality - Urban acoustics. noise propagation through the urban environment, meteorological effects, urban acoustic modeling, noise reduction measures, urban vegetation - Practical exercise on climatic data collection and analyze | ||||||||||||||||||||||||||||||||||||||
Skript | The course lectures and material are provided online via Moodle. | ||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | For MIBS Master students 151-8011-ooL Building Phyics Theory & Application is a pre-requisit for this course or instructor permission. For others no prior knowledge is required. | ||||||||||||||||||||||||||||||||||||||
651-4095-01L | Colloquium Atmosphere and Climate 1 | 1 KP | 1K | H. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Jnglin Wills, R. Knutti, U. Lohmann, C. Mohr, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild | |||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions. | ||||||||||||||||||||||||||||||||||||||
Lernziel | The students are exposed to different atmospheric science topics and learn how to take part in scientific discussions. | ||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| ||||||||||||||||||||||||||||||||||||||
651-4095-02L | Colloquium Atmosphere and Climate 2 | 1 KP | 1K | H. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Jnglin Wills, R. Knutti, U. Lohmann, C. Mohr, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild | |||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions. | ||||||||||||||||||||||||||||||||||||||
Lernziel | The students are exposed to different atmospheric science topics and learn how to take part in scientific discussions. | ||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| ||||||||||||||||||||||||||||||||||||||
651-4095-03L | Colloquium Atmosphere and Climate 3 | 1 KP | 1K | H. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Jnglin Wills, R. Knutti, U. Lohmann, C. Mohr, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild | |||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions. | ||||||||||||||||||||||||||||||||||||||
Lernziel | The students are exposed to different atmospheric science topics and learn how to take part in scientific discussions. | ||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| ||||||||||||||||||||||||||||||||||||||
701-0071-AAL | Mathematics III: Systems Analysis Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 4 KP | 9R | R. Knutti, H. Wernli | |||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In der Systemanalyse geht es darum, durch ausgesuchte praxisnahe Beispiele die in der Mathematik bereit gestellte Theorie zu vertiefen und zu veranschaulichen. Konkret behandelt werden: Dynamische lineare Boxmodelle mit einer und mehreren Variablen; Nichtlineare Boxmodelle mit einer oder mehreren Variablen; zeitdiskrete Modelle, und kontinuierliche Modelle in Raum und Zeit. | ||||||||||||||||||||||||||||||||||||||
Lernziel | Erlernen und Anwendung von Konzepten (Modellen) und quantitativen Methoden zur Lösung von umweltrelevanten Problemen. Verstehen und Umsetzen des systemanalytischen Ansatzes, d.h. Erkennen des Kernes eines Problemes - Abstraktion - Quantitatives Erfassen - Vorhersage. | ||||||||||||||||||||||||||||||||||||||
Inhalt | Einführung in die Grundlagen von Modellen; eindimensionale lineare Boxmodelle; mehrdimensionale lineare Boxmodelle; nichtlineare Boxmodell; Modelle in Raum und Zeit | ||||||||||||||||||||||||||||||||||||||
Skript | Lermatierial: Buch (siehe Literatur). | ||||||||||||||||||||||||||||||||||||||
Literatur | Imboden, D. and S. Koch (2003) Systemanalyse - Einführung in die mathematische Modellierung natürlicher Systeme. Berlin Heidelberg: Springer Verlag. | ||||||||||||||||||||||||||||||||||||||
701-0071-00L | Mathematik III: Systemanalyse | 4 KP | 2V + 1U | C. Brunner, R. Knutti, S. Schemm, H. Wernli | |||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In der Systemanalyse geht es darum, durch ausgesuchte praxisnahe Beispiele die in der Mathematik bereit gestellte Theorie zu vertiefen und zu veranschaulichen. Konkret behandelt werden: Dynamische lineare Boxmodelle mit einer und mehreren Variablen; Nichtlineare Boxmodelle mit einer oder mehreren Variablen; zeitdiskrete Modelle, und kontinuierliche Modelle in Raum und Zeit. | ||||||||||||||||||||||||||||||||||||||
Lernziel | Erlernen und Anwendung von Konzepten (Modellen) und quantitativen Methoden zur Lösung von umweltrelevanten Problemen. Verstehen und Umsetzen des systemanalytischen Ansatzes, d.h. Erkennen des Kernes eines Problemes - Abstraktion - Quantitatives Erfassen - Vorhersage. | ||||||||||||||||||||||||||||||||||||||
Inhalt | https://iac.ethz.ch/edu/courses/bachelor/vorbereitung/systemanalyse.html | ||||||||||||||||||||||||||||||||||||||
Skript | Folien werden über die Kurswebsite zur Verfügung gestellt. | ||||||||||||||||||||||||||||||||||||||
Literatur | Imboden, D. and S. Koch (2003) Systemanalyse - Einführung in die mathematische Modellierung natürlicher Systeme. Berlin Heidelberg: Springer Verlag. https://link.springer.com/book/10.1007%2F978-3-642-55667-8 | ||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| ||||||||||||||||||||||||||||||||||||||
701-0479-00L | Umwelt-Fluiddynamik | 3 KP | 2G | H. Wernli, M. Röthlisberger | |||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Die physikalischen Grundbegriffe und mathematischen Grundgleichungen zur Beschreibung von Umweltfluidsystemen auf der rotierenden Erde werden vermittelt. Grundlegende Konzepte (z.B. Vorticity-Dynamik und Wellen) werden formal eingeführt, quantitativ angewendet und mit Beispielen illustriert. Übungen helfen, den Stoff zu vertiefen. | ||||||||||||||||||||||||||||||||||||||
Lernziel | Die Studierenden können - Grundlagen, Konzepte und Methoden der Umweltfluiddynamik nennen. - die einzelnen Terme der physikalischen Grundgleichungen verstehen und diskutieren. - Grundgleichungen einfacher Problemstellungen der Umweltfluiddynamik mathematisch lösen. Es werden die Kompetenzen Prozessverständnis und Systemverständnis gelehrt, angewandt und geprüft. | ||||||||||||||||||||||||||||||||||||||
Inhalt | Physikalische Grundbegriffe und mathematische Grundgleichungen: Kontinuumshypothese, Kräfte, Konstitutivgesetze, Zustandsgleichungen und Grundlagen der Thermodynamik, Kinematik, Sätze für Masse, Impuls auf der rotierenden Erde. Konzepte und erläuternde Strömungssysteme: Vorticity-Dynamik, Grenzschichten, Instabilität, Turbulenz - in Bezug auf Umweltfluidsysteme. Skalen-Analyse: Dimensionslose Variable und dynamische Ähnlichkeit, Vereinfachungen der Strömungssysteme, z.B. Flachwasserannahme, geostrophische Strömung. Wellen in Umweltströmungssystemen. | ||||||||||||||||||||||||||||||||||||||
Skript | Wird abgegeben, in englischer Sprache. | ||||||||||||||||||||||||||||||||||||||
Literatur | Besprechung im Kurs. Siehe auch: web-Seite. | ||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| ||||||||||||||||||||||||||||||||||||||
701-1221-00L | Dynamics of Large-Scale Atmospheric Flow | 4 KP | 2V + 1U | H. Wernli, J. Riboldi | |||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Die Vorlesung vermittelt die Grundlagen der Dynamik von aussertropischen Wettersystemen (quasi-geostrophische Dynamik, potentielle Vorticity, Rossby-Wellen, barokline Instabilität). Grundlegende Konzepte werden formal eingeführt, quantitativ angewendet und mit realen Beispielen illustriert und vertieft. Übungen (quantitativ und qualitativ) sind ein wesentlicher Bestandteil des Kurses. | ||||||||||||||||||||||||||||||||||||||
Lernziel | Verständnis für dynamische Prozesse in der Atmosphäre sowie deren mathematisch-physikalische Formulierung. | ||||||||||||||||||||||||||||||||||||||
Inhalt | Die Atmosphärenphysik II behandelt vor allem die dynamischen Prozesse in der Erdatmosphäre. Diskutiert werden die Bewegungsgesetze der Atmosphäre und die Dynamik und Wechselwirkungen von synoptischen Systemen - also den wetterbestimmenden Hoch- und Tiefdruckgebieten. Mathematische Grundlage hierfuer ist insbesondere die Theorie der quasi-geostrophischen Bewegung, die im Rahmen der Vorlesung hergeleitet und interpretiert wird. | ||||||||||||||||||||||||||||||||||||||
Skript | Dynamics of large-scale atmospheric flow | ||||||||||||||||||||||||||||||||||||||
Literatur | - Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004, - Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997 | ||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: Physik I, II, Umwelt Fluiddynamik | ||||||||||||||||||||||||||||||||||||||
Kompetenzen |
|