Bernd Gärtner: Catalogue data in Autumn Semester 2024

Name Prof. Dr. Bernd Gärtner
Address
Inst. f. Theoretische Informatik
ETH Zürich, OAT Z 15
Andreasstrasse 5
8092 Zürich
SWITZERLAND
Telephone+41 44 632 70 26
Fax+41 44 632 10 63
E-mailgaertner@inf.ethz.ch
URLhttp://people.inf.ethz.ch/gaertner/
DepartmentComputer Science
RelationshipAdjunct Professor

NumberTitleECTSHoursLecturers
252-0209-00LAlgorithms, Probability, and Computing Information 8 credits4V + 2U + 1AB. Gärtner, R. Kyng, A. Steger, D. Steurer
AbstractAdvanced design and analysis methods for algorithms and data structures: Random(ized) Search Trees, Point Location, Minimum Cut, Linear Programming, Randomized Algebraic Algorithms (matchings), Probabilistically Checkable Proofs (introduction).
Learning objectiveStudying and understanding of fundamental advanced concepts in algorithms, data structures and complexity theory.
Lecture notesWill be handed out.
LiteratureIntroduction to Algorithms by T. H. Cormen, C. E. Leiserson, R. L. Rivest;
Randomized Algorithms by R. Motwani und P. Raghavan;
Computational Geometry - Algorithms and Applications by M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf.
252-1425-00LGeometry: Combinatorics and Algorithms Information 8 credits3V + 2U + 2AB. Gärtner, M. Hoffmann, P. Schnider, E. Welzl, M. Wettstein
AbstractGeometric structures are useful in many areas, and there is a need to understand their structural properties, and to work with them algorithmically. The lecture addresses theoretical foundations concerning geometric structures. Central objects of interest are triangulations. We study combinatorial (Does a certain object exist?) and algorithmic questions (Can we find a certain object efficiently?)
Learning objectiveThe goal is to make students familiar with fundamental concepts, techniques and results in combinatorial and computational geometry, so as to enable them to model, analyze, and solve theoretical and practical problems in the area and in various application domains.
In particular, we want to prepare students for conducting independent research, for instance, within the scope of a thesis project.
ContentPlanar and geometric graphs, embeddings and their representation (Whitney's Theorem, canonical orderings, DCEL), polygon triangulations and the art gallery theorem, convexity in R^d, planar convex hull algorithms (Jarvis Wrap, Graham Scan, Chan's Algorithm), point set triangulations, Delaunay triangulations (Lawson flips, lifting map, randomized incremental construction), Voronoi diagrams, the Crossing Lemma and incidence bounds, line arrangements (duality, Zone Theorem, ham-sandwich cuts), 3-SUM hardness, counting planar triangulations.
Lecture notesyes
LiteratureMark de Berg, Marc van Kreveld, Mark Overmars, Otfried Cheong, Computational Geometry: Algorithms and Applications, Springer, 3rd ed., 2008.
Satyan Devadoss, Joseph O'Rourke, Discrete and Computational Geometry, Princeton University Press, 2011.
Stefan Felsner, Geometric Graphs and Arrangements: Some Chapters from Combinatorial Geometry, Teubner, 2004.
Jiri Matousek, Lectures on Discrete Geometry, Springer, 2002.
Takao Nishizeki, Md. Saidur Rahman, Planar Graph Drawing, World Scientific, 2004.
Prerequisites / NoticePrerequisites: The course assumes basic knowledge of discrete mathematics and algorithms, as supplied in the first semesters of Bachelor Studies at ETH.
Outlook: In the following spring semester there is a seminar "Geometry: Combinatorics and Algorithms" that builds on this course. There are ample possibilities for Semester-, Bachelor- and Master Thesis projects in the area.
252-4202-00LSeminar in Theoretical Computer Science Information Restricted registration - show details 2 credits2SA. Steger, B. Gärtner, M. Hoffmann, J. Lengler, D. Steurer
AbstractPresentation of recent publications in theoretical computer science, including results by diploma, masters and doctoral candidates.
Learning objectiveThe goal is to introduce students to current research, and to enable them to read, understand, and present scientific papers.
Prerequisites / NoticeThis seminar takes place as part of the joint research seminar of several theory groups. Intended participation is for students with excellent performance only. Formal restriction is: prior successful participation in a master level seminar in theoretical computer science.
275-0002-00LInformation, Data & Computers Restricted registration - show details 2 credits1VB. Gärtner
AbstractThis course provides an introduction to computer science concepts that
are foundational for later work in the CAS and MAS programme.
Learning objectiveStudents understand fundamental notions of computer science: information, data, computation, programming, algorithm.

Students learn about computers as a concept, how computers fundamentally work, and how this is shaping modern computing infrastructures.

Students can explain the core ingredients of Data Science.
ContentWe will cover how information is managed as data, and how we use
computers to process data and generate new insights. Concrete
questions we will address are: what is data, and how does it represent
information? What is a computer, and how does it work? What is a
computer program? What is a programming language? What is an
algorithm? What is the role of AI in computer programming? What kind
of computer systems do we have today, and why? What is Data Science?
Through this, we will build a fundamental understanding of how
computer and data science enable today's information society.
LiteratureSlides and links to extra material will be distributed during the
course.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Problem-solvingassessed
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Personal CompetenciesCreative Thinkingfostered
Critical Thinkingassessed
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
401-0131-00LLinear Algebra Information 7 credits4V + 2UB. Gärtner, R. Weismantel
AbstractIntroduction to linear algebra: vectors and matrices, solving systems of linear equations, vector spaces and subspaces, orthogonality and least squares, determinants, eigenvalues and eigenvectors, singular value decomposition and linear transformations. Applications in and links to computer science will be presented in parallel.
Learning objective- Understand and apply fundamental concepts of linear algebra
- Learn about applications of linear algebra in computer science
ContentVectors and matrices, solving systems of linear equations, vector spaces and subspaces, orthogonality and least squares, determinants, eigenvalues and eigenvectors, singular value decomposition and linear transformations. Applications in and links to computer science.
Lecture notesWill be handed out at the start of the semester.
LiteratureGilbert Strang, Introduction to Linear Algebra, 6th Edition, Wellesley - Cambridge Press. Further literature and links can be found on the course webpage.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered