Bernd Gärtner: Catalogue data in Spring Semester 2020

Name Prof. Dr. Bernd Gärtner
Address
Inst. f. Theoretische Informatik
ETH Zürich, OAT Z 15
Andreasstrasse 5
8092 Zürich
SWITZERLAND
Telephone+41 44 632 70 26
Fax+41 44 632 10 63
E-mailgaertner@inf.ethz.ch
URLhttp://people.inf.ethz.ch/gaertner/
DepartmentComputer Science
RelationshipAdjunct Professor

NumberTitleECTSHoursLecturers
252-4202-00LSeminar in Theoretical Computer Science Information 2 credits2SE. Welzl, B. Gärtner, M. Ghaffari, M. Hoffmann, J. Lengler, A. Steger, D. Steurer, B. Sudakov
AbstractPresentation of recent publications in theoretical computer science, including results by diploma, masters and doctoral candidates.
ObjectiveTo get an overview of current research in the areas covered by the involved research groups. To present results from the literature.
Prerequisites / NoticeThis seminar takes place as part of the joint research seminar of several theory groups. Intended participation is for students with excellent performance only. Formal restriction is: prior successful participation in a master level seminar in theoretical computer science.
252-4225-00LPresenting Theoretical Computer Science Restricted registration - show details
Number of participants limited to 24.

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
2 credits2SB. Gärtner, M. Ghaffari, R. Kyng, A. Steger, D. Steurer, E. Welzl
AbstractStudents present current or classical results from theoretical computer science.
ObjectiveStudents learn to read, understand and present results from theoretical computer science. The main focus and deliverable is a good presentation of 45 minutes that can easily be followed and understood by the audience.
ContentStudents present current or classical results from theoretical computer science.
Prerequisites / NoticeThe seminar takes place as a block seminar on two Saturdays in April and/or May. Each presentation is jointly prepared and given by two students (procedure according to the seminar website).
All students must attend all presentations.
261-5110-00LOptimization for Data Science Information 8 credits3V + 2U + 2AB. Gärtner, D. Steurer
AbstractThis course provides an in-depth theoretical treatment of optimization methods that are particularly relevant in data science.
ObjectiveUnderstanding the theoretical guarantees (and their limits) of relevant optimization methods used in data science. Learning general paradigms to deal with optimization problems arising in data science.
ContentThis course provides an in-depth theoretical treatment of optimization methods that are particularly relevant in machine learning and data science.

In the first part of the course, we will first give a brief introduction to convex optimization, with some basic motivating examples from machine learning. Then we will analyse classical and more recent first and second order methods for convex optimization: gradient descent, projected gradient descent, subgradient descent, stochastic gradient descent, Nesterov's accelerated method, Newton's method, and Quasi-Newton methods. The emphasis will be on analysis techniques that occur repeatedly in convergence analyses for various classes of convex functions. We will also discuss some classical and recent theoretical results for nonconvex optimization.

In the second part, we discuss convex programming relaxations as a powerful and versatile paradigm for designing efficient algorithms to solve computational problems arising in data science. We will learn about this paradigm and develop a unified perspective on it through the lens of the sum-of-squares semidefinite programming hierarchy. As applications, we are discussing non-negative matrix factorization, compressed sensing and sparse linear regression, matrix completion and phase retrieval, as well as robust estimation.
Prerequisites / NoticeAs background, we require material taught in the course "252-0209-00L Algorithms, Probability, and Computing". It is not necessary that participants have actually taken the course, but they should be prepared to catch up if necessary.
263-4203-00LGeometry: Combinatorics and Algorithms Information
The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
2 credits2SB. Gärtner, M. Hoffmann, E. Welzl, M. Wettstein
AbstractThis seminar complements the course Geometry: Combinatorics & Algorithms. Students of the seminar will present original research papers, some classic and some of them very recent.
ObjectiveEach student is expected to read, understand, and elaborate on a selected research paper. To this end, (s)he should give a 45-min. presentation about the paper. The process includes

* getting an overview of the related literature;
* understanding and working out the background/motivation:
why and where are the questions addressed relevant?
* understanding the contents of the paper in all details;
* selecting parts suitable for the presentation;
* presenting the selected parts in such a way that an audience
with some basic background in geometry and graph theory can easily understand and appreciate it.
ContentThis seminar is held once a year and complements the course Geometry: Combinatorics & Algorithms. Students of the seminar will present original research papers, some classic and some of them very recent. The seminar is a good preparation for a master, diploma, or semester thesis in the area.
Prerequisites / NoticePrerequisite: Successful participation in the course "Geometry: Combinatorics & Algorithms" (takes place every HS) is required.