Paolo Burlando: Catalogue data in Autumn Semester 2019 |
Name | Prof. Dr. Paolo Burlando |
Field | Hydrologie und Wasserwirtschaft |
Address | Institut für Umweltingenieurwiss. ETH Zürich, HIF D 87.2 Laura-Hezner-Weg 7 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 38 12 |
paolob@ethz.ch | |
Department | Civil, Environmental and Geomatic Engineering |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
102-0237-00L | Hydrology II | 3 credits | 2G | P. Burlando, S. Fatichi | |
Abstract | The course presents advanced hydrological analyses of rainfall-runoff processes. The course is given in English. | ||||
Learning objective | Tools for hydrological modelling are discussed at the event and continuous scale. The focus is on the description of physical processes and their modelisation with practical examples. | ||||
Content | Monitoring of hydrological systems (point and space monitoring, remote sensing). The use of GIS in hydrology (practical applications). General concepts of watershed modelling. Infiltration. IUH models. Event based rainfall-runoff modelling. Continuous rainfall-runoff models (components and prrocesses). Example of modelling with the PRMS model. Calibration and validation of models. Flood routing (unsteady flow, hydrologic routing, examples). The course contains an extensive semester project. | ||||
Lecture notes | Parts of the script for "Hydrology I" are used. Also available are the overhead transparencies used in the lectures. The semester project consists of a two part instruction manual. | ||||
Literature | Additional literature is presented during the course. | ||||
102-0293-AAL | Hydrology Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 3 credits | 6R | P. Burlando | |
Abstract | Diese Lehrveranstaltung führt in die Ingenieur-Hydrologie ein. Zuerst werden Grundlagen zur Beschreibung und Messung hydrologischer Vorgänge (Niederschlag, Rückhalt, Verdunstung, Abfluss, Erosion, Schnee) vermittelt, anschliessend wird in grundlegende mathematische Modelle zur Modellierung einzelner Prozesse und der Niederschlag-Abfluss-Relation eingeführt, inkl. Hochwasser-Analyse. | ||||
Learning objective | Kenntnis der Grundzüge der Hydrologie. Kennenlernen von Methoden, zur Abschätzung hydrologischer Grössen, die zur Dimensionierung von Wasserbauwerken und für die Nutzung von Wasserresourcen relevant sind. | ||||
Content | Der hydrologische Kreislauf: globale Wasserressourcen, Wasserbilanz, räumliche und zeitliche Dimension der hydrologischen Prozesse. Niederschlag: Niederschlagsmechanismen, Regenmessung, räumliche/zeitliche Verteilung des Regens, Niederschlagsregime, Punktniederschlag/Gebietsniederschlag, Isohyeten, Thiessenpolygon, Extremniederschlag, Dimensionierungsniederschlag. Interzeption: Messung und Schätzung. Evaporation und Evapotranspiration: Prozesse, Messung und Schätzung, potentielle und effektive Evapotranspiration, Energiebilanzmethode, empirische Methode. Infiltration: Messung, Horton-Gleichung, empirische und konzeptionelle Methoden, F-index und Prozentuale Methode, SCS-CN Methode. Einzugsgebietscharakteristik: Morphologie der Einzugsgebiets, topografische und unterirdische Wasserscheide, hypsometrische Kurve, Gefälle, Dichte des Entwässerungsnetzes. Oberflächlicher und oberflächennaher Abfluss: Hortonischer Oberflächenabfluss, gesättigter Oberflächenabfluss, Abflussmessung, hydrologische Regimes, Jahresganglinien, Abflussganglinie von Extremereignissen, Abtrennung des Basisabflusses, Direktabfluss, Schneeschmelze, Abflussregimes, Abflussdauerkurve. Stoffabtrag und Stofftransport: Erosion im Einzugsgebiet, Bodenerosion durch Wasser, Berechnung der Bodenerosion, Grundlagen des Sedimenttransports. Schnee und Eis: Scnheeeigenschaften und -messungen Schätzung des Scnheeschmelzprozesses durch die Energiebilanzmethode, Abfluss aus Schneeschmelze, Temperatur-Index- und Grad-Tag-Verfahren. Niederschlag-Abfluss-Modelle (N-A): Grundlagen der N-A Modelle, Lineare Modelle und das Instantaneous Unit Hydrograph (IUH) Konzept, linearer Speicher, Nash Modell. Hochwasserabschätzung: empirische Formeln, Hochwasserfrequenzanalyse, Regionalisierungtechniken, indirekte Hochwasserabschätzung mit N-A Modellen, Rational Method. | ||||
Lecture notes | Ein internes Skript ist zur Verfügung (kostenpflichtig, nur Herstellungskosten) Die Kopie der Folien zur Vorlesung können auf den Webseiten der Professur für Hydrologie und Wasserwirtschaft herunterladen werden | ||||
Literature | Chow, V.T., D.R. Maidment und L.W. Mays (1988) Applied Hydrology, New York u.a., McGraw-Hill. Dingman, S.L., (1994) Physical Hydrology, 2nd ed., Upper Saddle River, N.J., Prentice Hall Dyck, S. und G. Peschke (1995) Grundlagen der Hydrologie, 3. Aufl., Berlin, Verlag für Bauwesen. Maniak, U. (1997) Hydrologie und Wasserwirtschaft, eine Einführung für Ingenieure, Springer, Berlin. Manning, J.C. (1997) Applied Principles of Hydrology, 3. Aufl., Upper Saddle River, N.J., Prentice Hall. | ||||
Prerequisites / Notice | Vorbereitend zu Hydrologie I sind die Vorlesungen in Statistik. Der Inhalt, der um ein Teil der Übungen zu behandeln und um ein Teil der Vorlesungen zu verstehen notwendig ist, kann zusammengefasst werden, wie hintereinander es beschrieben wird: Elementare Datenverarbeitung: Hydrologische Messungen und Daten, Datenreduzierung (grafische Darstellungen und numerische Kenngrössen). Frequenzanalyse: Hydrologische Daten als Zufallsvariabeln, Wiederkehrperiode, Frequenzfaktor, Wahrscheinlichkeitspapier, Anpassen von Wahrscheinlichkeitsverteilungen, parametrische und nicht-parametrische Tests, Parameterschätzung. | ||||
102-0293-00L | Hydrology | 3 credits | 2G | P. Burlando | |
Abstract | The course introduces the students to engineering hydrology. It covers first physical hydrology, that is the description and the measurement of hydrological processes (precipitation, interception, evapotranspiration, runoff, erosion, and snow), and it introduces then the basic mathematical models of the single processes and of the rainfall-runoff transformation, thereby including flood analysis. | ||||
Learning objective | Know the main features of engineering hydrology. Apply methods to estimate hydrological variables for dimensioning hydraulic structures and managing water ressources. | ||||
Content | The hydrological cycle: global water resources, water balance, space and time scales of hydrological processes. Precipitation: mechanisms of precipitation formation, precipitation measurements, variability of precipitation in space and time, precipitation regimes, point/basin precipitation, isohyetal method, Thiessen polygons, storm rainfall, design hyetograph. Interception: measurement and estimation. Evaporation and evapotranspiration: processes, measurement and estimation, potential and actual evapotranspiration, energy balance method, empirical methods. Infiltration: measurement, Horton’s equation, empirical and conceptual models, phi-index and percentage method, SCS-CN method. Surface runoff and subsurface flow: Hortonian and Dunnian surface runoff, streamflow measurement, streamflow regimes, annual hydrograph, flood hydrograph analysis – baseflow separation, flow duration curve. Basin characteristics: morphology, topographic and phreatic divide, hypsometric curve, slope, drainage density. Rainfall-runoff models (R-R): rationale, linear model of rainfall-runoff transformation, concept of the instantaneous unit hydrograph (IUH), linear reservoir, Nash model. Flood estimation methods: flood frequency analysis, deterministic methods, probabilistic methods (e.g. statistical regionalisation, indirect R-R methods for flood estimation, rational method). Erosion and sediment transport: watershed scale erosion, soil erosion by water, estimation of surface erosion, sediment transport. Snow (and ice) hydrology: snow characteristic variables and measurements, estimation of snowmelt processes by the energy budget equation and conceptual melt models (temperature index method and degree-day method), snowmelt runoff. | ||||
Lecture notes | The lecture notes as well as the lecture presentations and handouts may be downloaded from the website of the Chair of Hydrology and Water Resources Management. | ||||
Literature | Chow, V.T., Maidment, D.R. and Mays, L.W. (1988). Applied Hydrology, New York, McGraw-Hill. Dingman, S.L. (2002). Physical Hydrology, 2nd ed., Upper Saddle River, N.J., Prentice Hall. Dyck, S. und Peschke, G. (1995). Grundlagen der Hydrologie, 3. Aufl., Berlin, Verlag für Bauwesen. Maidment, D.R. (1993). Handbook of Hydrology, New York, McGraw-Hill. Maniak, U. (1997). Hydrologie und Wasserwirtschaft, eine Einführung für Ingenieure, Springer, Berlin. Manning, J.C. (1997). Applied Principles of Hydrology, 3rd ed., Upper Saddle River, N.J., Prentice Hall. | ||||
Prerequisites / Notice | Knowledge of statistics is a prerequisite. The required theoretical background, which is needed for understanding part of the lectures and performing part of the assignments, may be summarised as follows: Elementary data processing: hydrological measurements and data, data visualisation (graphical representation and numerical parameters). Frequency analysis: hydrological data as random variables, return period, frequency factor, probability paper, probability distribution fitting, parametric and non-parametric tests, parameter estimation. | ||||
102-0474-AAL | Introduction to Water Resources Management Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 4 credits | 4R | P. Burlando | |
Abstract | The course offers an introduction to the basics of water resources analysis and management covering the topics of water demand vs availability, water exploitation and reservoir design, aquatic physics, water quality and pollution, water conservation and remediation in rivers, lakes and aquifers, sustainable water use. | ||||
Learning objective | Introduction to the basics of water resources management based on physical and chemical processes; principle of sustainability | ||||
Content | Aquatische Physik: Flusshydraulik, Seehydraulik, Grundwasserhydraulik, Zeitkonstanten und Grössenordnungen, Flussmorphologie und Sedimenttransport. Wassergüte: Anforderungen, Schadstoffausbreitung, Selbstreinigung, Thermische Belastung, relevante Schadstoffe und Quellen, Stossbelastungen, Zeitkonstanten und Grössenordnungen. Wasserwirtschaft: Struktur von Dargebot und Nachfrage. Optionen zur Schliessung der Disparität: Reservoire, Grundwasserspeicher, Überleitungen, Wasserwirtschaftliche Rahmenplanung (Masterplan) , Gewässerschutz, Sanierung und Renaturierung (Oberflächengewässer und Grundwasser), Variabilität, Stochastik und Risiko. Nachhaltigkeit: Definitionen, Beispiele für nicht-nachhaltiges Wirtschaften, Wasserprobleme der Entwicklungsländer, Wasser und Landwirtschaft, Projektbewertung und Umweltverträglichkeitsprüfung. Ökonomische und Soziologische Bezüge. Alle Aspekte sollen mit Fallbeispielen illustriert werden. Die Übungen werden zum grössten Teil auf analytischen Formeln beruhen. Einige Übungen benötigen den Computer. | ||||
Lecture notes | Skript in wöchentlichen Folgen. | ||||
102-0515-01L | Environmental Engineering Seminars | 3 credits | 3S | J. Wang, P. Burlando, I. Hajnsek, S. Hellweg, M. Holzner, M. Maurer, P. Molnar, E. Morgenroth, R. Stocker | |
Abstract | The course is organized in the form of seminars held by the students. Topics selected from the core disciplines of the curriculum (water resources, urban water engineering, material fluxes, waste technology, air polution, earth observation) are discussed in the class on the basis of scientific papers that are illustrated and critically reviewed by the students. | ||||
Learning objective | Learn about recent research results in environmental engineering and analyse practical applications in environmental engineering. | ||||
118-0101-00L | Water Resources Seminars Number of participants limited to 16. Automatic admittance given to the MAS students. | 3 credits | 3S | D. Molnar, P. Burlando | |
Abstract | The Seminar Series features invited experts from a wide range of disciplines, who will present their experiences working with water related topics in international settings. The students will be exposed to many different perspectives, and will be asked to apply the information they learn to specific case studies. | ||||
Learning objective | The Seminar Series will provide students with background information on the wide range of topics related to water resources. The lectures will challenge the students to evaluate water resources and water resource management in new ways, using tools that have been successfully implemented in real case scenarios. The seminars will include theory, interactive discussions, and the assessment of methodologies. Student participation will be highly encouraged. | ||||
Content | The Seminar Series is aimed at offering students the opportunity to learn about water resources in a multi-disciplinary fashion, with a focus on international examples. Selected topics will include: Water & Sanitation, Urban Water Management, Politics & International Water Management, Water Resources & Agriculture, Water Hazards (floods), Water Resources & Ecosystem Services, Integrated Water Resource Management, and Adaptation to Climate Change. For additional details see the course website http://www.mas-swr.ethz.ch/education/courses/core-courses/water-resources-seminars.html. | ||||
Prerequisites / Notice | For further information, contact the MAS coordinator, Darcy Molnar (darcy.molnar@ifu.baug.ethz.ch) | ||||
651-2915-00L | Seminar in Hydrology | 0 credits | 1S | P. Burlando, J. W. Kirchner, S. Löw, D. Or, C. Schär, M. Schirmer, S. I. Seneviratne, M. Stähli, C. H. Stamm, University lecturers | |
Abstract | |||||
Learning objective |