Paolo Burlando: Katalogdaten im Herbstsemester 2019 |
Name | Herr Prof. Dr. Paolo Burlando |
Lehrgebiet | Hydrologie und Wasserwirtschaft |
Adresse | Institut für Umweltingenieurwiss. ETH Zürich, HIF D 87.2 Laura-Hezner-Weg 7 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 38 12 |
paolo.burlando@ifu.baug.ethz.ch | |
Departement | Bau, Umwelt und Geomatik |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
102-0237-00L | Hydrology II | 3 KP | 2G | P. Burlando, S. Fatichi | |
Kurzbeschreibung | The course presents advanced hydrological analyses of rainfall-runoff processes. The course is given in English. | ||||
Lernziel | Tools for hydrological modelling are discussed at the event and continuous scale. The focus is on the description of physical processes and their modelisation with practical examples. | ||||
Inhalt | Monitoring of hydrological systems (point and space monitoring, remote sensing). The use of GIS in hydrology (practical applications). General concepts of watershed modelling. Infiltration. IUH models. Event based rainfall-runoff modelling. Continuous rainfall-runoff models (components and prrocesses). Example of modelling with the PRMS model. Calibration and validation of models. Flood routing (unsteady flow, hydrologic routing, examples). The course contains an extensive semester project. | ||||
Skript | Parts of the script for "Hydrology I" are used. Also available are the overhead transparencies used in the lectures. The semester project consists of a two part instruction manual. | ||||
Literatur | Additional literature is presented during the course. | ||||
102-0293-AAL | Hydrology Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 3 KP | 6R | P. Burlando | |
Kurzbeschreibung | Diese Lehrveranstaltung führt in die Ingenieur-Hydrologie ein. Zuerst werden Grundlagen zur Beschreibung und Messung hydrologischer Vorgänge (Niederschlag, Rückhalt, Verdunstung, Abfluss, Erosion, Schnee) vermittelt, anschliessend wird in grundlegende mathematische Modelle zur Modellierung einzelner Prozesse und der Niederschlag-Abfluss-Relation eingeführt, inkl. Hochwasser-Analyse. | ||||
Lernziel | Kenntnis der Grundzüge der Hydrologie. Kennenlernen von Methoden, zur Abschätzung hydrologischer Grössen, die zur Dimensionierung von Wasserbauwerken und für die Nutzung von Wasserresourcen relevant sind. | ||||
Inhalt | Der hydrologische Kreislauf: globale Wasserressourcen, Wasserbilanz, räumliche und zeitliche Dimension der hydrologischen Prozesse. Niederschlag: Niederschlagsmechanismen, Regenmessung, räumliche/zeitliche Verteilung des Regens, Niederschlagsregime, Punktniederschlag/Gebietsniederschlag, Isohyeten, Thiessenpolygon, Extremniederschlag, Dimensionierungsniederschlag. Interzeption: Messung und Schätzung. Evaporation und Evapotranspiration: Prozesse, Messung und Schätzung, potentielle und effektive Evapotranspiration, Energiebilanzmethode, empirische Methode. Infiltration: Messung, Horton-Gleichung, empirische und konzeptionelle Methoden, F-index und Prozentuale Methode, SCS-CN Methode. Einzugsgebietscharakteristik: Morphologie der Einzugsgebiets, topografische und unterirdische Wasserscheide, hypsometrische Kurve, Gefälle, Dichte des Entwässerungsnetzes. Oberflächlicher und oberflächennaher Abfluss: Hortonischer Oberflächenabfluss, gesättigter Oberflächenabfluss, Abflussmessung, hydrologische Regimes, Jahresganglinien, Abflussganglinie von Extremereignissen, Abtrennung des Basisabflusses, Direktabfluss, Schneeschmelze, Abflussregimes, Abflussdauerkurve. Stoffabtrag und Stofftransport: Erosion im Einzugsgebiet, Bodenerosion durch Wasser, Berechnung der Bodenerosion, Grundlagen des Sedimenttransports. Schnee und Eis: Scnheeeigenschaften und -messungen Schätzung des Scnheeschmelzprozesses durch die Energiebilanzmethode, Abfluss aus Schneeschmelze, Temperatur-Index- und Grad-Tag-Verfahren. Niederschlag-Abfluss-Modelle (N-A): Grundlagen der N-A Modelle, Lineare Modelle und das Instantaneous Unit Hydrograph (IUH) Konzept, linearer Speicher, Nash Modell. Hochwasserabschätzung: empirische Formeln, Hochwasserfrequenzanalyse, Regionalisierungtechniken, indirekte Hochwasserabschätzung mit N-A Modellen, Rational Method. | ||||
Skript | Ein internes Skript ist zur Verfügung (kostenpflichtig, nur Herstellungskosten) Die Kopie der Folien zur Vorlesung können auf den Webseiten der Professur für Hydrologie und Wasserwirtschaft herunterladen werden | ||||
Literatur | Chow, V.T., D.R. Maidment und L.W. Mays (1988) Applied Hydrology, New York u.a., McGraw-Hill. Dingman, S.L., (1994) Physical Hydrology, 2nd ed., Upper Saddle River, N.J., Prentice Hall Dyck, S. und G. Peschke (1995) Grundlagen der Hydrologie, 3. Aufl., Berlin, Verlag für Bauwesen. Maniak, U. (1997) Hydrologie und Wasserwirtschaft, eine Einführung für Ingenieure, Springer, Berlin. Manning, J.C. (1997) Applied Principles of Hydrology, 3. Aufl., Upper Saddle River, N.J., Prentice Hall. | ||||
Voraussetzungen / Besonderes | Vorbereitend zu Hydrologie I sind die Vorlesungen in Statistik. Der Inhalt, der um ein Teil der Übungen zu behandeln und um ein Teil der Vorlesungen zu verstehen notwendig ist, kann zusammengefasst werden, wie hintereinander es beschrieben wird: Elementare Datenverarbeitung: Hydrologische Messungen und Daten, Datenreduzierung (grafische Darstellungen und numerische Kenngrössen). Frequenzanalyse: Hydrologische Daten als Zufallsvariabeln, Wiederkehrperiode, Frequenzfaktor, Wahrscheinlichkeitspapier, Anpassen von Wahrscheinlichkeitsverteilungen, parametrische und nicht-parametrische Tests, Parameterschätzung. | ||||
102-0293-00L | Hydrology | 3 KP | 2G | P. Burlando | |
Kurzbeschreibung | Diese Lehrveranstaltung führt in die Ingenieur-Hydrologie ein. Zuerst werden Grundlagen zur Beschreibung und Messung hydrologischer Vorgänge (Niederschlag, Rückhalt, Verdunstung, Abfluss, Erosion, Schnee) vermittelt, anschliessend wird in grundlegende mathematische Modelle zur Modellierung einzelner Prozesse und der Niederschlag-Abfluss-Relation eingeführt, inkl. Hochwasser-Analyse. | ||||
Lernziel | Kenntnis der Grundzüge der Hydrologie. Kennenlernen von Methoden, zur Abschätzung hydrologischer Grössen, die zur Dimensionierung von Wasserbauwerken und für die Nutzung von Wasserresourcen relevant sind. | ||||
Inhalt | Der hydrologische Kreislauf: globale Wasserressourcen, Wasserbilanz, räumliche und zeitliche Dimension der hydrologischen Prozesse. Niederschlag: Niederschlagsmechanismen, Regenmessung, räumliche/zeitliche Verteilung des Regens, Niederschlagsregime, Punktniederschlag/Gebietsniederschlag, Isohyeten, Thiessenpolygon, Extremniederschlag, Dimensionierungsniederschlag. Interzeption: Messung und Schätzung. Evaporation und Evapotranspiration: Prozesse, Messung und Schätzung, potentielle und effektive Evapotranspiration, Energiebilanzmethode, empirische Methode. Infiltration: Messung, Horton-Gleichung, empirische und konzeptionelle Methoden, Phi-index und Prozentuale Methode, SCS-CN Methode. Oberflächlicher und oberflächennaher Abfluss: Hortonischer Oberflächenabfluss, gesättigter Oberflächenabfluss, Abflussmessung, hydrologische Regimes, Jahresganglinien, Abflussganglinie von Extremereignissen, Abtrennung des Basisabflusses, Direktabfluss, Schneeschmelze, Abflussregimes, Abflussdauerkurve. Einzugsgebietscharakteristik: Morphologie der Einzugsgebiets, topografische und unterirdische Wasserscheide, hypsometrische Kurve, Gefälle, Dichte des Entwässerungsnetzes. Niederschlag-Abfluss-Modelle (N-A): Grundlagen der N-A Modelle, Lineare Modelle und das Instantaneous Unit Hydrograph (IUH) Konzept, linearer Speicher, Nash Modell. Hochwasserabschätzung: empirische Formeln, Hochwasserfrequenzanalyse, Regionalisierungtechniken, indirekte Hochwasserabschätzung mit N-A Modellen, Rational Method. Stoffabtrag und Stofftransport: Erosion im Einzugsgebiet, Bodenerosion durch Wasser, Berechnung der Bodenerosion, Grundlagen des Sedimenttransports. Schnee und Eis: Scnheeeigenschaften und -messungen, Schätzung des Scnheeschmelzprozesses durch die Energiebilanzmethode, Abfluss aus Schneeschmelze, Temperatur-Index- und Grad-Tag-Verfahren. | ||||
Skript | Die Kopie der Folien zur Vorlesung können auf den Webseiten der Professur für Hydrologie und Wasserwirtschaft herunterladen werden. | ||||
Literatur | Chow, V.T., Maidment, D.R. und Mays, L.W. (1988). Applied Hydrology, New York u.a., McGraw-Hill. Dingman, S.L. (2002). Physical Hydrology, 2nd ed., Upper Saddle River, N.J., Prentice Hall. Dyck, S. und Peschke, G. (1995). Grundlagen der Hydrologie, 3. Aufl., Berlin, Verlag für Bauwesen. Maidment, D.R. (1993). Handbook of Hydrology, New York, McGraw-Hill. Maniak, U. (1997). Hydrologie und Wasserwirtschaft, eine Einführung für Ingenieure, Springer, Berlin. Manning, J.C. (1997). Applied Principles of Hydrology, 3. Aufl., Upper Saddle River, N.J., Prentice Hall. | ||||
Voraussetzungen / Besonderes | Vorbereitende zu Hydrologie I sind die Vorlesungen in Statistik. Der Inhalt, der um ein Teil der Übungen zu behandeln und um ein Teil der Vorlesungen zu verstehen notwendig ist, kann zusammengefasst werden, wie hintereinander es bescrieben wird: Elementare Datenverarbeitung: Hydrologische Messungen und Daten, Datenreduzierung (grafische Darstellungen und numerische Kenngrössen). Frequenzanalyse: Hydrologische Daten als Zufallsvariabeln, Wiederkehrperiode, Frequenzfaktor, Wahrscheinlichkeitspapier, Anpassen von Wahrscheinlichkeitsverteilungen, parametrische und nicht-parametrische Tests, Parameterschätzung. | ||||
102-0474-AAL | Introduction to Water Resources Management Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 4 KP | 4R | P. Burlando | |
Kurzbeschreibung | Die Vorlesung gibt eine Einführung in die Analyse und Bewirtschaftung von Wasserressourcen, Wasserbedarf und Wasserdargebot, Speicherbemessung, Aquatische Physik, Wassergüte und Verschmutzung, Schutz und Sanierung von Flüssen, Seen und Grundwasser, nachhaltige und integrale Wasserwirtschaft. | ||||
Lernziel | Einführung in die Wasserwirtschaft auf der Basis der relevanten physikalischen und chemischen Prozesse, Prinzip der Nachhaltigkeit. | ||||
Inhalt | Aquatische Physik: Flusshydraulik, Seehydraulik, Grundwasserhydraulik, Zeitkonstanten und Grössenordnungen, Flussmorphologie und Sedimenttransport. Wassergüte: Anforderungen, Schadstoffausbreitung, Selbstreinigung, Thermische Belastung, relevante Schadstoffe und Quellen, Stossbelastungen, Zeitkonstanten und Grössenordnungen. Wasserwirtschaft: Struktur von Dargebot und Nachfrage. Optionen zur Schliessung der Disparität: Reservoire, Grundwasserspeicher, Überleitungen, Wasserwirtschaftliche Rahmenplanung (Masterplan) , Gewässerschutz, Sanierung und Renaturierung (Oberflächengewässer und Grundwasser), Variabilität, Stochastik und Risiko. Nachhaltigkeit: Definitionen, Beispiele für nicht-nachhaltiges Wirtschaften, Wasserprobleme der Entwicklungsländer, Wasser und Landwirtschaft, Projektbewertung und Umweltverträglichkeitsprüfung. Ökonomische und Soziologische Bezüge. Alle Aspekte sollen mit Fallbeispielen illustriert werden. Die Übungen werden zum grössten Teil auf analytischen Formeln beruhen. Einige Übungen benötigen den Computer. | ||||
Skript | Skript in wöchentlichen Folgen. | ||||
102-0515-01L | Seminar Umweltingenieurwissenschaften | 3 KP | 3S | J. Wang, P. Burlando, I. Hajnsek, S. Hellweg, M. Holzner, M. Maurer, P. Molnar, E. Morgenroth, R. Stocker | |
Kurzbeschreibung | Die Kurs ist in Form eines Seminars mit studentischen Vorträgen organisiert. Themen aus den Kerndisziplinen des Studiengangs (Wasserressourcen und -haushalt, Siedlungswasserwirtschaft, Stoffhaushalt, Entsorgungstechnik, Luftreinhaltung, Erdbeobachtung) werden diskutiert auf der Basis von wissenschaftlichen Veröffentlichungen, die von den Studierenden dargestellt und kritisch begutachtet werden. | ||||
Lernziel | Neue Forschungsergebnisse und Anwendungsbeispiele aus dem Fachbereich der Umweltingenieurwissenschaften kennen und analysieren lernen. | ||||
118-0101-00L | Water Resources Seminars Number of participants limited to 16. Automatic admittance given to the MAS students. | 3 KP | 3S | D. Molnar, P. Burlando | |
Kurzbeschreibung | The Seminar Series features invited experts from a wide range of disciplines, who will present their experiences working with water related topics in international settings. The students will be exposed to many different perspectives, and will be asked to apply the information they learn to specific case studies. | ||||
Lernziel | The Seminar Series will provide students with background information on the wide range of topics related to water resources. The lectures will challenge the students to evaluate water resources and water resource management in new ways, using tools that have been successfully implemented in real case scenarios. The seminars will include theory, interactive discussions, and the assessment of methodologies. Student participation will be highly encouraged. | ||||
Inhalt | The Seminar Series is aimed at offering students the opportunity to learn about water resources in a multi-disciplinary fashion, with a focus on international examples. Selected topics will include: Water & Sanitation, Urban Water Management, Politics & International Water Management, Water Resources & Agriculture, Water Hazards (floods), Water Resources & Ecosystem Services, Integrated Water Resource Management, and Adaptation to Climate Change. For additional details see the course website http://www.mas-swr.ethz.ch/education/courses/core-courses/water-resources-seminars.html. | ||||
Voraussetzungen / Besonderes | For further information, contact the MAS coordinator, Darcy Molnar (darcy.molnar@ifu.baug.ethz.ch) | ||||
651-2915-00L | Seminar in Hydrology | 0 KP | 1S | P. Burlando, J. W. Kirchner, S. Löw, D. Or, C. Schär, M. Schirmer, S. I. Seneviratne, M. Stähli, C. H. Stamm, Uni-Dozierende | |
Kurzbeschreibung | |||||
Lernziel |