Dimos Poulikakos: Catalogue data in Spring Semester 2018

Name Prof. em. Dr. Dimos Poulikakos
FieldThermodynamics
Address
Energy Science Center (ESC)
ETH Zürich, ML J 36
Sonneggstrasse 3
8092 Zürich
SWITZERLAND
E-maildpoulikakos@ethz.ch
URLhttp://www.ltnt.ethz.ch
DepartmentMechanical and Process Engineering
RelationshipProfessor emeritus

NumberTitleECTSHoursLecturers
151-0052-00LThermodynamics II4 credits2V + 2UI. Karlin, D. Poulikakos
AbstractIntroduction to thermodynamics of reactive systems and to the fundamentals of heat transfer.
ObjectiveIntroduction to the theory and to the fundamentals of the technical thermodynamics. Main focus: Chemical thermodynamics and heat transfer
Content1st and 2nd law of thermodynamics for chemically reactive systems, chemical exergy, fuel cells and kinetic gas theory.
General mechanisms of heat transfer. Introduction to heat conductivity. Stationary 1-D and 2-D heat conduction. Instationary conduction. Convection. Forced convection - flow around and through bodies. Natural convection. Evaporation (boiling) and condensation. Heat radiation. Combined heat transfer.
Lecture notesLAV: Slides and lecture notes in English
LTNT: Slides and lecture notes in German.
LiteratureF.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 6th edition, 2006.

M.J. Moran, H.N. Shapiro, Fundamentals of Engineering Thermodynamics, John Wiley & Sons, 2007.
151-0060-00LThermodynamics and Energy Conversion in Micro- and Nanoscale Technologies4 credits2V + 2UD. Poulikakos, H. Eghlidi, T. Schutzius
AbstractThe lecture deals with both: the thermodynamics in nano- and microscale systems and the thermodynamics of ultra-fast phenomena. Typical areas of applications are microelectronics manufacturing and cooling, laser technology, manufacturing of novel materials and coatings, surface technologies, wetting phenomena and related technologies, and micro- and nanosystems and devices.
ObjectiveThe student will acquire fundamental knowledge of micro and nanoscale interfacial thermofluidics including light interaction with surfaces. Furthermore, the student will be exposed to a host of applications ranging from superhydrophobic surfaces and microelectronics cooling to biofluidics and solar energy, all of which will be discussed in the context of the course.
ContentThermodynamic aspects of intermolecular forces, Molecular dynamics; Interfacial phenomena; Surface tension; Wettability and contact angle; Wettability of Micro/Nanoscale textured surfaces: superhydrophobicity and superhydrophilicity.

Physics of micro- and nanofluidics.

Principles of electrodynamics and optics; Optical waves at interfaces; Plasmonics: principles and applications.
Lecture notesyes
151-0906-00LFrontiers in Energy Research Restricted registration - show details
This course is only for doctoral students.
2 credits2SD. Poulikakos, R. Boes, V. Hoffmann, G. Hug, M. Mazzotti, A. Patt, A. Schlüter
AbstractDoctoral students at ETH Zurich working in the broad area of energy present their research to their colleagues, their advisors and the scientific community. Each week a different student gives a 50-60 min presentation of their research (a full introduction, background & findings) followed by discussion with the audience.
ObjectiveKnowledge of advanced research in the area of energy.
ContentDoctoral students at ETH Zurich working in the broad area of energy present their research to their colleagues, to their advisors and to the scientific community. There will be one presentation a week during the semester, each structured as follows: 20 min introduction to the research topic, 30 min presentation of the results, 30 min discussion with the audience.
Lecture notesSlides will be available on the Energy Science Center pages(www.esc.ethz.ch/events/frontiers-in-energy-research.html).
151-1053-00LThermo- and Fluid Dynamics0 credits2KP. Jenny, R. S. Abhari, K. Boulouchos, C. Müller, N. Noiray, D. Poulikakos, H.‑M. Prasser, T. Rösgen, A. Steinfeld
AbstractCurrent advanced research activities in the areas of thermo- and fluid dynamics are presented and discussed, mostly by external speakers.

The talks are public and open also for interested students.
ObjectiveKnowledge of advanced research in the areas of thermo- and fluid dynamics
ContentCurrent advanced research activities in the areas of thermo- and fluid dynamics are presented and discussed, mostly by external speakers.