Name | Prof. Dr. Frédéric Merkt |
Field | Physikalische Chemie |
Address | Inst. Mol. Phys. Wiss. ETH Zürich, HCI E 215 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telephone | +41 44 632 43 67 |
frederic.merkt@phys.chem.ethz.ch | |
Department | Chemistry and Applied Biosciences |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
402-0551-00L | Laser Seminar | 0 credits | 1S | T. Esslinger, J. Faist, J. Home, U. Keller, F. Merkt, H. J. Wörner | |
Abstract | Research colloquium | ||||
Learning objective | |||||
529-0422-00L | Physical Chemistry II: Chemical Reaction Kinetics | 4 credits | 3V + 1U | F. Merkt, U. Hollenstein | |
Abstract | Introduction to Chemical Reaction Kinetics. Fundamental concepts: rate laws, elementary reactions and composite reactions, molecularity, reaction order. Experimental methods in reaction kinetics. Simple chemical reaction rate theories. Reaction mechanisms and complex kinetic systems, chain reactions. Homogeneous catalysis and enzyme kinetics. | ||||
Learning objective | Introduction to Chemical Reaction Kinetics | ||||
Content | Fundamental concepts: rate laws, elementary reactions and composite reactions, molecularity, reaction order. Experimental methods in reaction kinetics up to new developments in femtosecond kinetics. Simple chemical reaction rate theories: temperature dependence of the rate constant and Arrhenius equation, collision theory, reaction cross-section, transition state theory. Reaction mechanisms and complex kinetic systems, approximation techniques, chain reactions, explosions and detonations. Homogeneous catalysis and enzyme kinetics. Kinetics of charged particles. Diffusion and diffusion-controlled reactions. Photochemical kinetics. Heterogeneous reactions and heterogeneous catalysis. | ||||
Literature | - M. Quack und S. Jans-Bürli: Molekulare Thermodynamik und Kinetik, Teil 1, Chemische Reaktionskinetik, VdF, Zürich, 1986. - G. Wedler: Lehrbuch der Physikalischen Chemie, Verlag Chemie, Weinheim, 1982. | ||||
Prerequisites / Notice | Voraussetzungen: - Mathematik I und II - Allgemeine Chemie I und II - Physikalische Chemie I | ||||
529-0427-00L | Electron Spectroscopy | 1 credit | 2S | F. Merkt | |
Abstract | Group seminar on electronic spectroscopy, photoelectron spectroscopy, vacuum ultraviolet spectroscopy. | ||||
Learning objective | |||||
Content | Group seminar on electronic spectroscopy, photoelectron spectroscopy, vacuum ultraviolet spectroscopy. | ||||
Prerequisites / Notice | Participation to this seminar must be discussed with the lecturer. | ||||
529-0431-AAL | Physical Chemistry III: Molecular Quantum Mechanics Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. This course does not offer a lecture of its own but it is linked to the course 529-0431-00L. | 4 credits | 9R | F. Merkt | |
Abstract | Postulates of quantum mechanics, operator algebra, Schrödinger's equation, state functions and expectation values, matrix representation of operators, particle in a box, tunneling, harmonic oscillator, molecular vibrations, angular momentum and spin, generalised Pauli principle, perturbation theory, electronic structure of atoms and molecules, Born-Oppenheimer approximation. | ||||
Learning objective | This is an introductory course in quantum mechanics. The course starts with an overview of the fundamental concepts of quantum mechanics and introduces the mathematical formalism. The postulates and theorems of quantum mechanics are discussed in the context of experimental and numerical determination of physical quantities. The course develops the tools necessary for the understanding and calculation of elementary quantum phenomena in atoms and molecules. | ||||
Content | Postulates and theorems of quantum mechanics: operator algebra, Schrödinger's equation, state functions and expectation values. Linear motions: free particles, particle in a box, quantum mechanical tunneling, the harmonic oscillator and molecular vibrations. Angular momentum: electronic spin and orbital motion, molecular rotations. Electronic structure of atoms and molecules: the Pauli principle, angular momentum coupling, the Born-Oppenheimer approximation. Variational principle and perturbation theory. Discussion of bigger systems (solids, nano-structures). | ||||
Literature | P.W. Atkins, R.S. Friedman: Molecular Quantum Mechanics, 5th Edition, Oxford University Press 2010, ISBN 978-0-19-954142-3. J.S. Townsend: A Modern Approach to Quantum Mechanics, 2nd Edition, University Science Books 2012, ISBN 978-1-89-138-978-8. | ||||
529-0479-00L | Theoretical Chemistry, Molecular Spectroscopy and Dynamics | 1 credit | 2S | F. Merkt, M. Reiher, J. Richardson, R. Signorell, H. J. Wörner | |
Abstract | Seminar on theoretical chemistry, molecular spectroscopy and dynamics. | ||||
Learning objective | |||||
529-0499-00L | Physical Chemistry | 1 credit | 1K | M. Reiher, A. Barnes, G. Jeschke, B. H. Meier, F. Merkt, J. Richardson, R. Riek, S. Riniker, T. Schmidt, R. Signorell, H. J. Wörner | |
Abstract | Institute-Seminar covering current research Topics in Physical Chemistry | ||||
Learning objective |