Ralph Müller: Catalogue data in Spring Semester 2020

Name Prof. Dr. Ralph Müller
FieldBiomechanik
Address
Institut für Biomechanik
ETH Zürich, GLC H 15.1
Gloriastrasse 37/ 39
8092 Zürich
SWITZERLAND
Telephone+41 44 632 45 92
Fax+41 44 633 11 24
E-mailram@ethz.ch
URLhttp://n.ethz.ch/~ram/cv.html
DepartmentHealth Sciences and Technology
RelationshipFull Professor

NumberTitleECTSHoursLecturers
376-0022-00LImaging and Computing in Medicine Information Restricted registration - show details 4 credits3GR. Müller, P. Christen, C. J. Collins
AbstractImaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamental as well as modern techniques and methods of imaging and computing in medicine.
Learning objective1. Understanding and practical implementation of biosignal processes methods for imaging
2. Understanding of imaging techniques including radiation imaging, radiographic imaging systems, computed tomography imaging, diagnostic ultrasound imaging, and magnetic resonance imaging
3. Knowledge of computing, programming, modelling and simulation fundamentals
4. Computational and systems thinking as well as scripting and programming skills
5. Understanding and practical implementation of emerging computational methods and their application in medicine including artificial intelligence, deep learning, big data, and complexity
6. Understanding of the emerging concept of personalised and in silico medicine
7. Encouragement of critical thinking and creating an environment for independent and self-directed studying
ContentImaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamental as well as modern techniques and methods of imaging and computing in medicine. For the imaging portion of the course, biosignal processing, radiation imaging, radiographic imaging systems, computed tomography imaging, diagnostic ultrasound imaging, and magnetic resonance imaging are covered. For the computing portion of the course, computing, programming, and modelling and simulation fundamentals are covered as well as their application in artificial intelligence and deep learning; complexity and systems medicine; big data and personalised medicine; and computational physiology and in silico medicine.
The course is structured as a seminar in three parts of 45 minutes with video lectures and a flipped classroom setup: in the first part (TORQUEs: Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness), students study the basic concepts in short video lectures on the online learning platform Moodle. At the end of this first part, students must post a number of questions in the Moodle forum that will be addressed in the second part of the lectures using a flipped classroom concept. First, the lecturers may prepare additional teaching material to answer the posted questions and potentially discuss further questions (Q&A). Second, the students will form small groups to acquire additional knowledge online or from additionally distributed material and to present their findings to the rest of the class.
Lecture notesStored on Moodle.
Prerequisites / NoticeLectures will be given in English.
376-1397-00LOrthopaedic Biomechanics Information Restricted registration - show details
Number of participants limited to 48.
3 credits2GR. Müller, P. Atkins, J. Schwiedrzik
AbstractThis course is aimed at studying the mechanical and structural engineering of the musculoskeletal system alongside the analysis and design of orthopaedic solutions to musculoskeletal failure.
Learning objectiveTo apply engineering and design principles to orthopaedic biomechanics, to quantitatively assess the musculoskeletal system and model it, and to review rigid-body dynamics in an interesting context.
ContentEngineering principles are very important in the development and application of quantitative approaches in biology and medicine. This course includes a general introduction to structure and function of the musculoskeletal system: anatomy and physiology of musculoskeletal tissues and joints; biomechanical methods to assess and quantify tissues and large joint systems. These methods will also be applied to musculoskeletal failure, joint replacement and reconstruction; implants; biomaterials and tissue engineering.
Lecture notesStored on Moodle.
LiteratureOrthopaedic Biomechanics:
Mechanics and Design in Musculoskeletal Systems

Authors: Donald L. Bartel, Dwight T. Davy, Tony M. Keaveny
Publisher: Prentice Hall; Copyright: 2007
ISBN-10: 0130089095; ISBN-13: 9780130089090
Prerequisites / NoticeLectures will be given in English.
376-1974-00LColloquium in Biomechanics Information 2 credits2KB. Helgason, S. J. Ferguson, R. Müller, J. G. Snedeker, W. R. Taylor, M. Zenobi-Wong
AbstractCurrent topics in biomechanics presented by speakers from academia and industry.
Learning objectiveGetting insight into actual areas and problems of biomechanics.