Lothar Thiele: Catalogue data in Spring Semester 2020

Name Prof. em. Dr. Lothar Thiele
FieldTechnische Informatik
Address
Inst. f. Techn. Informatik u. K.
ETH Zürich, ETZ G 88
Gloriastrasse 35
8092 Zürich
SWITZERLAND
Telephone+41 44 632 70 31
E-mailthiele@tik.ee.ethz.ch
URLhttp://www.tik.ee.ethz.ch/~thiele/
DepartmentInformation Technology and Electrical Engineering
RelationshipProfessor emeritus

NumberTitleECTSHoursLecturers
227-0013-00LComputer Engineering Information Restricted registration - show details 4 credits2V + 1U + 1PL. Thiele
AbstractThe course provides knowledge about structures and models of digital systems, assembler and compiler, control path and data path, pipelining, speculation techniques, superscalar computer architectures, memory hierarchy and virtual memory, operating system, processes and threads.
Learning objectiveLogical and physical structure of computer systems. Introduction to principles in hardware design, datapath and control path, assembler programming, modern architectures (pipelining, speculation techniques, superscalar architectures, multithreading), memory hierarchy and virtual memory, software concepts.
ContentStructures and models of digital systems, abstraction and hierarchy in computer systems, assembler and compiler, control path and data path, pipelining, speculation techniques, superscalar computer architectures, memory hierarchy and virtual memory, operating system, processes and threads.

Theoretical and practical exercises using a simulation-based infrastructure.
Lecture notesMaterial for practical training, copies of transparencies.
LiteratureD.A. Patterson, J.L. Hennessy: Computer Organization and Design: The Hardware/ Software Interface. Morgan Kaufmann Publishers, Inc., San Francisco, ISBN-13: 978-0124077263, 2014.
Prerequisites / NoticePrerequisites: Programming skills in high level language, knowledge of digital design.
227-0126-00LAdvanced Topics in Networked Embedded Systems2 credits1SL. Thiele, J. Beutel
AbstractThe seminar will cover advanced topics in networked embedded systems. A particular focus are cyber-physical systems, internet of things, and sensor networks in various application domains.
Learning objectiveThe goal is to get a deeper understanding on leading edge technologies in the discipline, on classes of applications, and on current as well as future research directions. In addition, participants will improve their presentation, reading and reviewing skills.
ContentThe seminar enables Master students, PhDs and Postdocs to learn about latest breakthroughs in wireless sensor networks, networked embedded systems and devices, and energy-harvesting in several application domains, including environmental monitoring, tracking, smart buildings and control. Participants are requested to actively participate in the organization and preparation of the seminar. In particular, they review all presented papers using a standard scientific reviewing system, they present one of the papers orally and they lead the corresponding discussion session.