Wolfram Uhlig: Catalogue data in Autumn Semester 2019

Name Dr. Wolfram Uhlig
E-mailwuhlig@retired.ethz.ch
DepartmentChemistry and Applied Biosciences
RelationshipLecturer

NumberTitleECTSHoursLecturers
529-1001-01LGeneral Chemistry (for Biology/Pharmacy/HST)4 credits4VW. Uhlig
AbstractThe lecture deals with a number of basic chemistry concepts. These include (amongst others) chemical reactions, energy transfer during chemical reactions, properties of ionic and covalent bonds, Lewis structures, properties of solutions, kinetics, thermodynamics, acid-base equilibria, electrochemistry and properties of metal complexes.
ObjectiveThe course is designed to provide an understanding of the basic principles and concepts of general and inorganic chemistry.
ContentThe lecture deals with a number of basic chemistry concepts. These include (amongst others) chemical reactions, energy transfer during chemical reactions, properties of ionic and covalent bonds, Lewis structures, properties of solutions, kinetics, thermodynamics, acid-base equilibria, electrochemistry and properties of metal complexes.
Literature- Charles E. Mortimer, Chemie - Das Basiswissen der Chemie. 12. Auflage, Georg Thieme Verlag Stuttgart, 2015.

Weiterführende Literatur:
Brown, LeMay, Bursten CHEMIE (deutsch)
Housecroft and Constable, CHEMISTRY (englisch)
Oxtoby, Gillis, Nachtrieb, MODERN CHEMISTRY (englisch)
529-2001-AALChemistry I and II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
9 credits19RW. Uhlig
AbstractGeneral Chemistry I and II: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium, kinetics, acids and bases, electrochemistry
ObjectiveIntroduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems.
Content1. Stoichiometry

2. Atoms and Elements (Quantenmechanical Model of the Atom)

3. Chemical Bonding

4. Thermodynamics

5. Chemical Kinetics

6. Chemical Equilibrium (Acids and Bases, Solubility Equilibria)

7. Electrochemistry
Lecture notesNivaldo J. Tro
Chemistry - A molecular Approach (Pearson), Chapter 1-18
LiteratureHousecroft and Constable, CHEMISTRY
Oxtoby, Gillis, Nachtrieb, MODERN CHEMISTRY
529-2001-02LChemistry I4 credits2V + 2UJ. Cvengros, J. E. E. Buschmann, P. Funck, E. C. Meister, W. Uhlig, R. Verel
AbstractGeneral Chemistry I: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium.
ObjectiveIntroduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems.
Content1. Stoichiometry
Amount of substance and mass. Composition of chemical compounds. Reaction equation. Ideal gas law.
2. Atoms
Elementary particles and atoms. Electron configuration of the elements. Periodic system.
3. Chemical bonding and its representation. Spatial arrangement of atoms in molecules. Molecular orbitals.
4. Basics of chemical thermodynamics
System and surroundings. Description of state and change of state of chemical systems.
5. First law of thermodynamics
Internal energy. Heat and Work. Enthalpy and reaction enthalpy.
6. Second law of thermodynamics
Entropy. Change of entropy in chemical systems and universe. Reaction entropy.
7. Gibbs energy and chemical potential.
Combination of laws of thermodynamics. Gibbs energy and chemical reactions. Activities of gases, condensed substances and species in solution. Equilibrium constant.
8. Chemical equilibrium
Law of mass action. Reaction quotient and equilibrium constant. Phase transition equilibrium.
9. Acids and bases
Properties of acids and bases. Dissociation of acids and bases. pH and the calculation of pH-values in acid-base systems. Acid-base diagrams. Buffers. Polyprotic acids and bases.
10. Dissolution and precipitation.
Heterogeneous equilibrium. Dissolution and solubility product. Carbon dioxide-carbonic acid-carbonate equilibrium.
Lecture notesOnline-Skript mit durchgerechneten Beispielen.
LiteratureCharles E. Mortimer, CHEMIE - DAS BASISWISSEN DER CHEMIE. 12. Auflage, Georg Thieme Verlag Stuttgart, 2015.

Weiterführende Literatur:
Theodore L. Brown, H. Eugene LeMay, Bruce E. Bursten, CHEMIE. 10. Auflage, Pearson Studium, 2011. (deutsch)

Catherine Housecroft, Edwin Constable, CHEMISTRY: AN INTRODUCTION TO ORGANIC, INORGANIC AND PHYSICAL CHEMISTRY, 3. Auflage, Prentice Hall, 2005.(englisch)
529-2002-AALChemistry II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
5 credits11RH. Grützmacher, W. Uhlig
AbstractChemistry II: Redox reactions, chemistry of the elements, introduction to organic chemistry
ObjectiveErweitern der allgemeinen Grundlagen und Erarbeiten einer Basis, um Prozesse in komplexeren Umweltsystemen (Wasser / Luft / Boden) in ihrem zeitlichen und quantitativen Ablauf verstehen und beurteilen zu können.
Content1. Redoxreactions

2. Inorganic Chemistry
Rules for nomenclature of inorganic compounds. Systematic description of the groups of elements in the periodical system and the most important compounds of these elements. Formation of compounds as a consequence of the electronoc structure of the elements.

3. Introduction to organic chemistry
Description of the most important classes of compounds and of the functional groups. Principal reactivity of these functional groups.
Stereochemistry.
Rection mechanisms: SN1- and SN2-reactions, electrophilic aromatic subtitutions, eliminations (E1 and E2), addition reactions (C=C and C=O double bonds). Chemistry of carbony and carboxyl groups.
Rules for nomenclature of inorganic compounds. Systematic description of the groups of elements in the periodical system and the most important compounds of these elements. Formation of compounds as a consequence of the electronoc structure of the elements.

3. Introduction to organic chemistry
Description of the most important classes of compounds and of the functional groups. Principal reactivity of these functional groups.
Stereochemistry.
Rection mechanisms: SN1- and SN2-reactions, electrophilic aromatic subtitutions, eliminations (E1 and E2), addition reactions (C=C and C=O double bonds). Chemistry of carbony and carboxyl groups.
Lecture notesC.E.Housecroft, E.C.Constable, Chemistry, 4rd Edition, Pearson, Harlow (England), 2010 (ISBN 0-131-27567-4), Chap. 18-33
LiteratureTh.L.Brown, H.E.LeMay, B.E.Bursten; Chemie, 10. Auflage, Pearson Studium, München, 2007 (ISBN 3-8273-7191-0)

C.E.Housecroft, E.C.Constable, Chemistry, 3rd Edition, Pearson, Harlow (England), 2006 (ISBN 0-131-27567-4)

D.W.Oxtoby, H.P.Gillis, N.H.Nachtrieb, Principles of Modern Chemistry, Fifth Edition, Thomson, London, 2002 (ISBN 0-03-035373-4)