Norbert Hungerbühler: Catalogue data in Autumn Semester 2019 |
Name | Prof. Dr. Norbert Hungerbühler |
Field | Mathematics and Education |
Address | Professur Mathematik & Ausbildung ETH Zürich, HG G 51.3 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telephone | +41 44 633 93 51 |
norbert.hungerbuehler@math.ethz.ch | |
URL | http://www.math.ethz.ch/~buhler |
Department | Mathematics |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
401-0171-00L | Linear Algebra I | 3 credits | 2V + 1U | N. Hungerbühler | |
Abstract | Linear algebra is an indispensable tool of engineering mathematics. The course offers an introduction into the theory with many applications. The new notions are practised in the accompanying exercise classes. The course will be continued as Linear algebra II. | ||||
Learning objective | Upon completion of this course, students will be able to recognize linear structures, and to solve corresponding problems in theory and in practice. | ||||
Content | Systems of linear equations, Gaussian elimination, solution space, matrices, LR decomposition, Determinants, structure of linear spaces, normed vector spaces, inner products, method of least squares, QR decomposition, introduction to MATLAB, applications | ||||
Literature | * K. Nipp / D. Stoffer, Lineare Algebra, vdf Hochschulverlag, 5. Auflage 2002 * K. Meyberg / P. Vachenauer, Höhere Mathematik 1, Springer 2003 | ||||
Prerequisites / Notice | Active participation in the exercises is part of this course. It is expected, that students submit 3/4 of all exercises for control. | ||||
401-0293-99L | Mathematics III (Supplement) Simultaneous enrolment in "Mathematics III" (401-0293-00L) is compulsory. | 1 credit | 1A | A. Caspar, N. Hungerbühler | |
Abstract | Modellbildung, Vertiefung der mehrdimensionalen Analysis mit Schwerpunkt in der Anwendung der partiellen Differentialgleichungen, Vertiefung der Linearen Algebra und der Theorie der gewöhnlichen Differentialgleichungen, Einführung in die Systemanalyse. Die Studierenden erarbeiten zudem eine Unterrichtssequenz. | ||||
Learning objective | Die Studierenden kennen die wesentlichen Elemente der mathematischen Modellierung. Sie sind in der Lage, Modelle zu erstellen und mathematisch zu diskutieren. Sie können selbständig Unterrichtssequenzen zur Modellierung entwickeln. | ||||
Content | - Modellbildung - Lineare Modelle: Vektorräume, Normalformen, Lösungsraum eines Linearen DGL-Systems - Qualitative Aussagen, Nichtlineare Modelle: Stabilität für eine DGL 1.Ordnung, für allgemeine DGL-Systeme - Modelle in Raum und Zeit: Partielle DGL, Fourier-Reihe, -Transformation, Laplace-Operator | ||||
Literature | Imboden, D. and S. Koch, Systemanalyse - Einführung in die mathematische Modellierung natürlicher Systeme. Berlin Heidelberg: Springer Verlag (2008). | ||||
Prerequisites / Notice | Grundvorlesungen zur Analysis | ||||
401-3057-00L | Finite Geometries II Does not take place this semester. | 4 credits | 2G | N. Hungerbühler | |
Abstract | Finite geometries I, II: Finite geometries combine aspects of geometry, discrete mathematics and the algebra of finite fields. In particular, we will construct models of axioms of incidence and investigate closing theorems. Applications include test design in statistics, block design, and the construction of orthogonal Latin squares. | ||||
Learning objective | Finite geometries I, II: Students will be able to construct and analyse models of finite geometries. They are familiar with closing theorems of the axioms of incidence and are able to design statistical tests by using the theory of finite geometries. They are able to construct orthogonal Latin squares and know the basic elements of the theory of block design. | ||||
Content | Finite geometries I, II: finite fields, rings of polynomials, finite affine planes, axioms of incidence, Euler's thirty-six officers problem, design of statistical tests, orthogonal Latin squares, transformation of finite planes, closing theorems of Desargues and Pappus-Pascal, hierarchy of closing theorems, finite coordinate planes, division rings, finite projective planes, duality principle, finite Moebius planes, error correcting codes, block design | ||||
Literature | - Max Jeger, Endliche Geometrien, ETH Skript 1988 - Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983 - Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press - Dembowski: Finite Geometries. | ||||
401-3059-00L | Combinatorics II | 4 credits | 2G | N. Hungerbühler | |
Abstract | The course Combinatorics I and II is an introduction into the field of enumerative combinatorics. | ||||
Learning objective | Upon completion of the course, students are able to classify combinatorial problems and to apply adequate techniques to solve them. | ||||
Content | Contents of the lectures Combinatorics I and II: congruence transformation of the plane, symmetry groups of geometric figures, Euler's function, Cayley graphs, formal power series, permutation groups, cycles, Bunside's lemma, cycle index, Polya's theorems, applications to graph theory and isomers. | ||||
401-3971-99L | Professional Exercises I Enrolment only possible with matriculation in Mathematics Teaching Diploma or Mathematics TC at ETH. Simultaneous enrolment in Mathematics Didactics - course unit 401-3971-11L - is compulsory. | 1 credit | 1G | A. Barth, N. Hungerbühler | |
Abstract | Students learn about and learn to use findings from empirical research into mathematical didactics and best practice, as well as theoretical approaches to teaching mathematics. Methodological suggestions are compared and draft tuition concepts discussed. | ||||
Learning objective | On the basis of their understanding of mathematics, of the knowledge acquired from research into teaching/learning and subject teaching, and also of best practice, students who have completed this course will be in a position to draft motivating learning arrangements, with cognitive appeal, which trigger and maintain learning processes. The aim here is to implement a corresponding teaching plan, so that the mathematics tuition that is given has a general-education value, on the one hand, and ensures that pupils acquire the fundamental knowledge necessary for studying at university, on the other hand. | ||||
Prerequisites / Notice | This course is to be chosen jointly with 401-3972-00L. | ||||
401-5350-00L | Analysis Seminar | 0 credits | 1K | M. Struwe, A. Carlotto, F. Da Lio, A. Figalli, N. Hungerbühler, M. Iacobelli, T. Ilmanen, University lecturers | |
Abstract | Research colloquium | ||||
Learning objective | |||||
401-5960-00L | Colloquium on Mathematics, Computer Science, and Education Subject didactics for mathematics and computer science teachers. | 0 credits | N. Hungerbühler, M. Akveld, J. Hromkovic, H. Klemenz | ||
Abstract | Didactics colloquium | ||||
Learning objective | |||||
401-9970-00L | Introductory Internship Mathematics Enrolment only possible with matriculation in Mathematics Teaching Diploma or Mathematics TC at ETH. It is advisable to enrol in this course not prior to the first Mathematics Didactics course and not after the second Mathematics Didactics course. | 3 credits | 6P | N. Hungerbühler | |
Abstract | During the introductory teaching practice, the students sit in on five lessons given by the teacher responsible for their teaching practice, and teach five lessons themselves. The students are given observation and reflection assignments by the teacher responsible for their teaching practice. | ||||
Learning objective | Right at the start of their training, students acquire initial experience with the observation of teaching, the establishment of concepts for teaching and the implementation of teaching. This early confrontation with the complexity of everything that teaching involves helps students decide whether they wish to and, indeed, ought to, continue with the training. It forms a basis for the subsequent pedagogical and subject-didactics training. | ||||
Content | Den Studierenden bietet das Einführungspraktikum einen Einblick in den Berufsalltag einer Lehrperson. Die Praktikumslehrperson legt Beobachtungs- und Reflexionsaufträge und die Themen der zu erteilenden Lektionen fest. Die schriftlich dokumentierten Ergebnisse der Arbeitsaufträge sind Bestandteil des Portfolios des/der Studierenden. Anlässlich der Hospitationen erläutert die Praktikumslehrperson ihre fachlichen, fachdidaktischen und pädagogischen Überlegungen, auf deren Basis sie den Unterricht geplant hat und tauscht sich mit der/dem Studierenden aus. Zu den Lektionen, die der/die Studierende selber hält, führt die Praktikumslehrperson Vor- und Nachbesprechungen durch. | ||||
Literature | Wird von der Praktikumslehrperson bestimmt. | ||||
401-9983-00L | Mentored Work Subject Didactics Mathematics A Mentored Work Subject Didactics in Mathematics for TC and Teaching Diploma. | 2 credits | 4A | M. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, C. Rüede | |
Abstract | In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle. | ||||
Learning objective | The objective is for the students: - to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too. - to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use. | ||||
Content | Thematische Schwerpunkte Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht. Lernformen Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden. | ||||
Lecture notes | Eine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt. | ||||
Literature | Die Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt. | ||||
Prerequisites / Notice | Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden. | ||||
401-9984-00L | Mentored Work Subject Didactics Mathematics B Mentored Work Subject Didactics in Mathematics for Teaching Diploma and for students upgrading TC to Teaching Diploma. | 2 credits | 4A | M. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, C. Rüede | |
Abstract | In their mentored work on subject didactics, students put into practice the contents of the subject-didactics lectures and go into these in greater depth. Under supervision, they compile tuition materials that are conducive to learning and/or analyse and reflect on certain topics from a subject-based and pedagogical angle. | ||||
Learning objective | The objective is for the students: - to be able to familiarise themselves with a tuition topic by consulting different sources, acquiring materials and reflecting on the relevance of the topic and the access they have selected to this topic from a specialist, subject-didactics and pedagogical angle and potentially from a social angle too. - to show that they can independently compile a tuition sequence that is conducive to learning and develop this to the point where it is ready for use. | ||||
Content | Thematische Schwerpunkte Die Gegenstände der mentorierten Arbeit in Fachdidaktik stammen in der Regel aus dem gymnasialen Unterricht. Lernformen Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden. | ||||
Lecture notes | Eine kurze Anleitung zur mentorierten Arbeit in Fachdidaktik wird zur Verfügung gestellt. | ||||
Literature | Die Literatur ist themenspezifisch. Die Studierenden beschaffen sie sich in der Regel selber (siehe Lernziele). In besonderen Fällen wird sie vom Betreuer zur Verfügung gestellt. | ||||
Prerequisites / Notice | Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden. | ||||
401-9985-00L | Mentored Work Specialised Courses in the Respective Subject with an Educational Focus Mathematics A Mentored Work Specialised Courses in the Respective Subject with an Educational Focus in Mathematics for TC and Teaching Diploma. | 2 credits | 4A | M. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, A. F. Müller, C. Rüede | |
Abstract | In the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level. | ||||
Learning objective | The aim is for the students - to familiarise themselves with a new topic by obtaining material and studying the sources, so that they can selectively extend their specialist competence in this way. - to independently develop a text on the topic, with special focus on its mathematical comprehensibility in respect of the level of knowledge of the targeted readership. - To try out different options for specialist further training in their profession. | ||||
Content | Thematische Schwerpunkte: Die mentorierte Arbeit in FV besteht in der Regel in einer Literaturarbeit über ein Thema, das einen Bezug zum gymnasialem Unterricht oder seiner Weiterentwicklung hat. Die Studierenden setzen darin Erkenntnisse aus den Vorlesungen in FV praktisch um. Lernformen: Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden. | ||||
Lecture notes | Eine Anleitung zur mentorierten Arbeit in FV wird zur Verfügung gestellt. | ||||
Literature | Die Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt. | ||||
Prerequisites / Notice | Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden. | ||||
401-9986-00L | Mentored Work Specialised Courses in the Respective Subject with an Educational Focus Mathematics B Mentored Work Specialised Courses in the Respective Subject with an Educational Focus in Mathematics for Teaching Diploma and for students upgrading TC to Teaching Diploma. | 2 credits | 4A | M. Akveld, K. Barro, A. Barth, L. Halbeisen, N. Hungerbühler, A. F. Müller, C. Rüede | |
Abstract | In the mentored work on their subject specialisation, students link high-school and university aspects of the subject, thus strengthening their teaching competence with regard to curriculum decisions and the future development of the tuition. They compile texts under supervision that are directly comprehensible to the targeted readers - generally specialist-subject teachers at high-school level. | ||||
Learning objective | |||||
401-9987-00L | Teaching Internship Including Examination Lessons Mathematics Teaching Internship Mathematics for TC. Repetition of the Teaching Internship is excluded even if Examination Lessons are to be repeated. | 4 credits | 9P | N. Hungerbühler | |
Abstract | Students apply the insights, abilities and skills they have acquired within the context of an educational institution. They observe 10 lessons and teach 20 lessons independently. Two of them are as assessed as Examination Lessons. | ||||
Learning objective | - Students use their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching. - They are able to assess the significance of tuition topics for their subject from different angles (including interdisciplinary angles) and impart these to their pupils. - They learn the skills of the teaching trade. - They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution. - They learn to assess pupils' work. - Together with the teacher in charge of their teacher training, the students constantly evaluate their own performance. | ||||
Content | Die Studierenden sammeln Erfahrungen in der Unterrichtsführung, der Auseinandersetzung mit Lernenden, der Klassenbetreuung und der Leistungsbeurteilung. Zu Beginn des Praktikums plant die Praktikumslehrperson gemeinsam mit dem/der Studierenden das Praktikum und die Arbeitsaufträge. Die schriftlich dokumentierten Ergebnisse der Arbeitsaufträge sind Bestandteil des Portfolios der Studierenden. Anlässlich der Hospitationen erläutert die Praktikumslehrperson ihre fachlichen, fachdidaktischen und pädagogischen Überlegungen, auf deren Basis sie den Unterricht geplant hat und tauscht sich mit dem/der Studierenden aus. Die von dem/der Studierenden gehaltenen Lektionen werden vor- und nachbesprochen. Die Themen für die beiden Prüfungslektionen am Schluss des Praktikums erfahren die Studierenden in der Regel eine Woche vor dem Prüfungstermin. Sie erstellen eine Vorbereitung gemäss Anleitung und reichen sie bis am Vortrag um 12 Uhr den beiden Prüfungsexperten (Fachdidaktiker/-in, Departementsvertreter/-in) ein. Die gehaltenen Lektionen werden kriteriumsbasiert beurteilt. Die Beurteilung umfasst auch die schriftliche Vorbereitung und eine mündliche Reflexion des Kandidaten/der Kandidatin über die gehaltenen Lektionen im Rahmen eines kurzen Kolloquiums. | ||||
Lecture notes | Dokument: schriftliche Vorbereitung für Prüfungslektionen. | ||||
Literature | Wird von der Praktikumslehrperson bestimmt. | ||||
401-9988-00L | Teaching Internship Mathematics | 8 credits | 17P | N. Hungerbühler | |
Abstract | The teaching practice takes in 50 lessons: 30 are taught by the students, and the students sit in on 20 lessons. The teaching practice lasts 4-6 weeks. It gives students the opportunity to implement the contents of their specialist-subject, educational science and subject-didactics training in the classroom. Students also conduct work assignments in parallel to their teaching practice. | ||||
Learning objective | - Students use their specialist-subject, educational-science and subject-didactics training to draw up concepts for teaching. - They are able to assess the significance of tuition topics in their subject from different angles (including interdisciplinary angles) and impart these to their pupils. - They acquire the skills of the teaching trade. - They practise finding the balance between instruction and openness so that pupils can and, indeed, must make their own cognitive contribution. - They learn to assess pupils' work. - Together with the teacher in charge of their teacher training, the students constantly evaluate their own performance. | ||||
Content | Die Studierenden sammeln Erfahrungen in der Unterrichtsführung, der Auseinandersetzung mit Lernenden, der Klassenbetreuung und der Leistungsbeurteilung. Zu Beginn des Praktikums plant die Praktikumslehrperson gemeinsam mit dem/der Studierenden das Praktikum und die Arbeitsaufträge. Die schriftlich dokumentierten Ergebnisse der Arbeitsaufträge sind Bestandteil des Portfolios der Studierenden. Anlässlich der Hospitationen erläutert die Praktikumslehrperson ihre fachlichen, fachdidaktischen und pädagogischen Überlegungen, auf deren Basis sie den Unterricht geplant hat und tauscht sich mit dem/der Studierenden aus. Die von dem/der Studierenden gehaltenen Lektionen werden vor- und nachbesprochen. Die Praktikumslehrperson sorgt ausserdem dafür, dass der/die Studierende Einblick in den schulischen Alltag erhält und die vielfältigen Verpflichtungen einer Lehrperson kennen lernt. | ||||
Literature | Wird von der Praktikumslehrperson bestimmt. | ||||
Prerequisites / Notice | Das Praktikum findet verbindlich am Schluss der Ausbildung, vor dem Ablegen der Prüfungslektion statt. Allfällige fachwissenschaftliche Auflagen sind ebenfalls vor Antritt des Praktkums zu erfüllen. | ||||
401-9989-00L | Teaching Internship Mathematics II Teaching Internship for students upgrading TC to Teaching Diploma. | 4 credits | 9P | N. Hungerbühler | |
Abstract | This is a supplement to the Teaching Internship required to obtain a Master of Advanced Studies in Secondary and Higher Education in the corresponding subject. It is aimed at enlarging the already acquired teaching experience. Students observe 10 lessons and teach 15 lessons independently. | ||||
Learning objective | Die Studierenden können die Bedeutung von Unterrichtsthemen in ihrem Fach unter verschiedenen Blickwinkeln einschätzen. Sie kennen und beherrschen das unterrichtliche Handwerk. Sie können ein gegebenes Unterrichtsthema für eine Gruppe von Lernenden fachlich und didaktisch korrekt strukturieren und in eine adäquate Lernumgebung umsetzen. Es gelingt ihnen, die Balance zwischen Anleitung und Offenheit zu finden, sodass die Lernenden sowohl über den nötigen Freiraum wie über ausreichend Orientierung verfügen, um aktiv und effektiv flexibel nutzbares (Fach-)Wissen zu erwerben. | ||||
Content | Das Aufbaupraktikum richtet sich an Studierende, die bereits das Didaktik-Zertifikat in ihrem Fach erworben haben und nun eine Aufbauausbildung zum Master of Advanced Studies in Secondary and Higher Education absolvieren. In diesem zusätzlichen Praktikum sollen die Studierenden vertiefte unterrichtliche Erfahrungen machen. Auf der Grundlage der zusätzlich erworbenen Kenntnisse und mit Hilfe der ihnen jetzt zu Verfügung stehenden Instrumente analysieren sie verschiedene Aspekte des hospitierten Unterrichts. In dem von ihnen selbst gestalteten Unterricht nutzen sie beim Entwurf, bei der Durchführung und der Beurteilung ihrer Arbeit insbesondere die zusätzlich gewonnen Erkenntnisse aus der allgemeinen und fachdidaktischen Lehr- und Lernforschung. | ||||
401-9991-01L | Examination Lesson I Mathematics Simultaneous enrolment in "Examination Lesson II Mathematics" (401-9991-02L) is compulsory. | 1 credit | 2P | N. Hungerbühler | |
Abstract | In the context of an examination lesson conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training. | ||||
Learning objective | On the basis of a specified topic, the candidate shows that they are in a position - to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle - to analyze the tuition they have given with regard to its strengths and weaknesses, and outline improvements. | ||||
Content | Die Studierenden erfahren das Lektionsthema in der Regel 10 Tage vor dem Prüfungstermin. Von der zuständigen Lehrperson erhalten sie Informationen über den Wissensstand der zu unterrichtenden Klasse und können sie vor dem Prüfungstermin besuchen. Sie erstellen eine Vorbereitung gemäss Anleitung und reichen sie spätestens 48 Stunden vor der Prüfung den beiden Prüfungsexperten ein. Die gehaltene Lektion wird kriteriumsbasiert beurteilt. Die Beurteilung umfasst auch die schriftliche Vorbereitung und eine mündliche Reflexion des Kandidaten/ der Kandidatin über die gehaltene Lektion im Rahmen eines kurzen Kolloquiums. | ||||
Lecture notes | Dokument: Schriftliche Vorbereitung für Prüfungslektionen. | ||||
Prerequisites / Notice | Nach Abschluss der übrigen Ausbildung. | ||||
401-9991-02L | Examination Lesson II Mathematics Simultaneous enrolment in "Examination Lesson I Mathematics" (401-9991-01L) is compulsory. | 1 credit | 2P | N. Hungerbühler | |
Abstract | In the context of an examination lesson conducted and graded at a high school, the candidates provide evidence of the subject-matter-based and didactic skills they have acquired in the course of their training. | ||||
Learning objective | On the basis of a specified topic, the candidate shows that they are in a position - to develop and conduct teaching that is conducive to learning at high school level, substantiating it in terms of the subject-matter and from the didactic angle - to analyze the tuition they have given with regard to its strengths and weaknesses, and outline improvements. | ||||
Content | Die Studierenden erfahren das Lektionsthema in der Regel 10 Tage vor dem Prüfungstermin. Von der zuständigen Lehrperson erhalten sie Informationen über den Wissensstand der zu unterrichtenden Klasse und können sie vor dem Prüfungstermin besuchen. Sie erstellen eine Vorbereitung gemäss Anleitung und reichen sie bis spätestens 48 Stunden vor der Prüfung den beiden Prüfungsexperten ein. Die gehaltene Lektion wird kriteriumsbasiert beurteilt. Die Beurteilung umfasst auch die schriftliche Vorbereitung und eine mündliche Reflexion des Kandidaten/ der Kandidatin über die gehaltene Lektion im Rahmen eines kurzen Kolloquiums. | ||||
Lecture notes | Dokument: Schriftliche Vorbereitung für Prüfungslektionen. | ||||
Prerequisites / Notice | Nach Abschluss der übrigen Ausbildung. | ||||
406-0173-AAL | Linear Algebra I and II Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 6 credits | 13R | N. Hungerbühler | |
Abstract | Linear algebra is an indispensable tool of engineering mathematics. The course is an introduction to basic methods and fundamental concepts of linear algebra and its applications to engineering sciences. | ||||
Learning objective | After completion of this course, students are able to recognize linear structures and to apply adequate tools from linear algebra in order to solve corresponding problems from theory and applications. In addition, students have a basic knowledge of the software package Matlab. | ||||
Content | Systems of linear equations, Gaussian elimination, solution space, matrices, LR decomposition, determinants, structure of linear spaces, normed vector spaces, inner products, method of least squares, QR decomposition, introduction to MATLAB, applications. Linear maps, kernel and image, coordinates and matrices, coordinate transformations, norm of a matrix, orthogonal matrices, eigenvalues and eigenvectors, algebraic and geometric multiplicity, eigenbasis, diagonalizable matrices, symmetric matrices, orthonormal basis, condition number, linear differential equations, Jordan decomposition, singular value decomposition, examples in MATLAB, applications. Reading: Gilbert Strang "Introduction to linear algebra", Wellesley-Cambridge Press: Chapters 1-6, 7.1-7.3, 8.1, 8.2, 8.6 A Practical Introduction to MATLAB: http://www.math.ethz.ch/~grsam/Numerik_MAVT_WS0203/docs/intro.pdf Matlab Primer: http://www.math.ethz.ch/~grsam/Numerik_MAVT_WS0203/docs/primer.pdf | ||||
Literature | - Gilbert Strang: Introduction to linear algebra. Wellesley-Cambridge Press - A Practical Introduction to MATLAB: http://www.math.ethz.ch/~grsam/Numerik_MAVT_WS0203/docs/intro.pdf - Matlab Primer: http://www.math.ethz.ch/~grsam/Numerik_MAVT_WS0203/docs/primer.pdf |