Martin Mächler: Catalogue data in Spring Semester 2023

Name Prof. em. Dr. Martin Mächler
Name variantsMartin Maechler
Address
Seminar für Statistik (SfS)
ETH Zürich, HG GO 14.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telephone+41 44 632 34 08
E-mailmaechler@stat.math.ethz.ch
URLhttp://stat.ethz.ch/~maechler
DepartmentMathematics
RelationshipRetired Adjunct Professor

NumberTitleECTSHoursLecturers
401-3632-00LComputational Statistics8 credits3V + 1UM. Mächler
AbstractWe discuss modern statistical methods for data analysis, including methods for data exploration, prediction and inference. We pay attention to algorithmic aspects, theoretical properties and practical considerations. The class is hands-on and methods are applied using the statistical programming language R.
Learning objectiveThe student obtains an overview of modern statistical methods for data analysis, including their algorithmic aspects and theoretical properties. The methods are applied using the statistical programming language R.
ContentSee the class website
Prerequisites / NoticeAt least one semester of (basic) probability and statistics.

Programming experience is helpful but not required.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Media and Digital Technologiesassessed
Problem-solvingassessed
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
401-4620-00LStatistics Lab Restricted registration - show details 6 credits2SM. Kalisch, M. Mächler, L. Meier, N. Meinshausen
Abstract"Statistics Lab" is an Applied Statistics Workshop in Data Analysis. It
provides a learning environment in a realistic setting.

Students lead a regular consulting session at the Seminar für Statistik
(SfS). After the session, the statistical data analysis is carried out and
a written report and results are presented to the client. The project is
also presented in the course's seminar.
Learning objective- gain initial experience in the consultancy process
- carry out a consultancy session and produce a report
- apply theoretical knowledge to an applied problem

After the course, students will have practical knowledge about statistical
consulting. They will have determined the scientific problem and its
context, enquired the design of the experiment or data collection, and
selected the appropriate methods to tackle the problem. They will have
deepened their statistical knowledge, and applied their theoretical
knowledge to the problem. They will have gathered experience in explaining
the relevant mathematical and software issues to a client. They will have
performed a statistical analysis using R (or SPSS). They improve their
skills in writing a report and presenting statistical issues in a talk.
ContentStudents participate in consulting meetings at the SfS. Several consulting
dates are available for student participation. These are arranged
individually.

-During the first meeting the student mainly observes and participates in
the discussion. During the second meeting (with a different client), the
student leads the meeting. The member of the consulting team is overseeing
(and contributing to) the meeting.

-After the meeting, the student performs the recommended analysis, produces
a report and presents the results to the client.

-Finally, the student presents the case in the weekly course seminar in a
talk. All students are required to attend the seminar regularly.
Lecture notesn/a
LiteratureThe required literature will depend on the specific statistical problem
under investigation. Some introductory material can be found below.
Prerequisites / NoticePrerequisites:
Sound knowledge in basic statistical methods, especially regression and, if
possible, analysis of variance. Basic experience in Data Analysis with R.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesfostered
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingfostered
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
401-4626-00LAdvanced Statistical Modelling: Mixed Models
Does not take place this semester.
4 credits2VM. Mächler
AbstractMixed Models = (*| generalized| non-) linear Mixed-effects Models, extend traditional regression models by adding "random effect" terms.

In applications, such models are called "hierarchical models", "repeated measures" or "split plot designs". Mixed models are widely used and appropriate in an aera of complex data measured from living creatures from biology to human sciences.
Learning objective- Becoming aware how mixed models are more realistic and more powerful in many cases than traditional ("fixed-effects only") regression models.

- Learning to fit such models to data correctly, critically interpreting results for such model fits, and hence learning to work the creative cycle of responsible statistical data analysis:
"fit -> interpret & diagnose -> modify the fit -> interpret & ...."

- Becoming aware of computational and methodological limitations of these models, even when using state-of-the art software.
ContentThe lecture will build on various examples, use R and notably the `lme4` package, to illustrate concepts. The relevant R scripts are made available online.

Inference (significance of factors, confidence intervals) will focus on the more realistic *un*balanced situation where classical (ANOVA, sum of squares etc) methods are known to be deficient. Hence, Maximum Likelihood (ML) and its variant, "REML", will be used for estimation and inference.
Lecture notesWe will work with an unfinished book proposal from Prof Douglas Bates, Wisconsin, USA which itself is a mixture of theory and worked R code examples.

These lecture notes and all R scripts are made available from
https://github.com/mmaechler/MEMo
Literature(see web page and lecture notes)
Prerequisites / Notice- We assume a good working knowledge about multiple linear regression ("the general linear model') and an intermediate (not beginner's) knowledge about model based statistics (estimation, confidence intervals,..).

Typically this means at least two classes of (math based) statistics, say
1. Intro to probability and statistics
2. (Applied) regression including Matrix-Vector notation Y = X b + E

- Basic (1 semester) "Matrix calculus" / linear algebra is also assumed.

- If familiarity with [R](https://www.r-project.org/) is not given, it should be acquired during the course (by the student on own initiative).
401-5640-00LZüKoSt: Seminar on Applied Statistics Information 0 credits1KM. Kalisch, F. Balabdaoui, A. Bandeira, P. L. Bühlmann, R. Furrer, L. Held, T. Hothorn, M. Mächler, L. Meier, N. Meinshausen, J. Peters, M. Robinson, C. Strobl, S. van de Geer
Abstract5 to 6 talks on applied statistics.
Learning objectiveKennenlernen von statistischen Methoden in ihrer Anwendung in verschiedenen Gebieten, besonders in Naturwissenschaft, Technik und Medizin.
ContentIn 5-6 Einzelvorträgen pro Semester werden Methoden der Statistik einzeln oder überblicksartig vorgestellt, oder es werden Probleme und Problemtypen aus einzelnen Anwendungsgebieten besprochen.
3 bis 4 der Vorträge stehen in der Regel unter einem Semesterthema.
Lecture notesBei manchen Vorträgen werden Unterlagen verteilt.
Eine Zusammenfassung ist kurz vor den Vorträgen im Internet unter http://stat.ethz.ch/talks/zukost abrufbar.
Ankündigunen der Vorträge werden auf Wunsch zugesandt.
Prerequisites / NoticeDies ist keine Vorlesung. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben.
Nach besonderem Programm. Koordinator M. Kalisch, Tel. 044 632 3435
Lehrsprache ist Englisch oder Deutsch je nach ReferentIn.
Course language is English or German and may depend on the speaker.
401-6228-00LProgramming with R for Reproducible Research Information 1 credit1GM. Mächler
AbstractDeeper understanding of R: Function calls, rather than "commands".
Reproducible research and data analysis via Sweave and Rmarkdown.
Limits of floating point arithmetic.
Understanding how functions work. Environments, packages, namespaces.
Closures, i.e., Functions returning functions.
Lists and [mc]lapply() for easy parallelization.
Performance measurement and improvements.
Learning objectiveLearn to understand R as a (very versatile and flexible) programming language and learn about some of its lower level functionalities which are needed to understand *why* R works the way it does.
ContentSee "Skript": https://github.com/mmaechler/ProgRRR/tree/master/ETH
Lecture notesMaterial available from Github
https://github.com/mmaechler/ProgRRR/tree/master/ETH

(typically will be updated during course)
LiteratureNorman Matloff (2011) The Art of R Programming - A tour of statistical software design.
no starch press, San Francisco. on stock at Polybuchhandlung (CHF 42.-).

More material, notably H.Wickam's "Advanced R" : see my ProgRRR github page.
Prerequisites / NoticeR Knowledge on the same level as after *both* parts of the ETH lecture
401-6217-00L Using R for Data Analysis and Graphics
http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheitPre.do?semkez=2013W&lerneinheitId=84563&ansicht=ALLE&lang=de

An interest to dig deeper than average R users do.

Bring your own laptop with a recent version of R installed