Roland Siegwart: Catalogue data in Spring Semester 2020 |
Name | Prof. Dr. Roland Siegwart |
Field | Autonome Systeme |
Address | Inst. f. Robotik u. Intell. Syst. ETH Zürich, LEE J 205 Leonhardstrasse 21 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 23 58 |
Fax | +41 44 632 11 81 |
rolandsi@ethz.ch | |
Department | Mechanical and Process Engineering |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
151-0073-11L | Search and Rescue Worm-Robot ![]() Prerequisite: Enrollment for 151-0073-10L Search and Rescue Worm-Robot in HS19. | 14 credits | 15A | R. Siegwart | |
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | ||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | ||||
151-0073-21L | Drone-Catching Drone ![]() Prerequisite: Enrollment for 151-0073-20L Drone-Catching Drone in HS19. | 14 credits | 15A | R. Siegwart | |
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | ||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | ||||
151-0623-00L | ETH Zurich Distinguished Seminar in Robotics, Systems and Controls ![]() Does not take place this semester. | 1 credit | 1S | B. Nelson, M. Chli, R. Gassert, M. Hutter, W. Karlen, R. Riener, R. Siegwart | |
Abstract | This course consists of a series of seven lectures given by researchers who have distinguished themselves in the area of Robotics, Systems, and Controls. | ||||
Objective | Obtain an overview of various topics in Robotics, Systems, and Controls from leaders in the field. Please see http://www.msrl.ethz.ch/education/distinguished-seminar-in-robotics--systems---controls--151-0623-0.html for a list of upcoming lectures. | ||||
Content | This course consists of a series of seven lectures given by researchers who have distinguished themselves in the area of Robotics, Systems, and Controls. MSc students in Robotics, Systems, and Controls are required to attend every lecture. Attendance will be monitored. If for some reason a student cannot attend one of the lectures, the student must select another ETH or University of Zurich seminar related to the field and submit a one page description of the seminar topic. Please see http://www.msrl.ethz.ch/education/distinguished-seminar-in-robotics--systems---controls--151-0623-0.html for a suggestion of other lectures. | ||||
Prerequisites / Notice | Students are required to attend all seven lectures to obtain credit. If a student must miss a lecture then attendance at a related special lecture will be accepted that is reported in a one page summary of the attended lecture. No exceptions to this rule are allowed. | ||||
151-0854-00L | Autonomous Mobile Robots ![]() | 5 credits | 4G | R. Siegwart, M. Chli, N. Lawrance | |
Abstract | The objective of this course is to provide the basics required to develop autonomous mobile robots and systems. Main emphasis is put on mobile robot locomotion and kinematics, environment perception, and probabilistic environment modeling, localizatoin, mapping and navigation. Theory will be deepened by exercises with small mobile robots and discussed accross application examples. | ||||
Objective | The objective of this course is to provide the basics required to develop autonomous mobile robots and systems. Main emphasis is put on mobile robot locomotion and kinematics, environment perception, and probabilistic environment modeling, localizatoin, mapping and navigation. | ||||
Lecture notes | This lecture is enhanced by around 30 small videos introducing the core topics, and multiple-choice questions for continuous self-evaluation. It is developed along the TORQUE (Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness) concept, which is ETH's response to the popular MOOC (Massive Open Online Course) concept. | ||||
Literature | This lecture is based on the Textbook: Introduction to Autonomous Mobile Robots Roland Siegwart, Illah Nourbakhsh, Davide Scaramuzza, The MIT Press, Second Edition 2011, ISBN: 978-0262015356 | ||||
401-5860-00L | Seminar in Robotics for CSE | 4 credits | 2S | R. Siegwart | |
Abstract | This course provides an opportunity to familiarize yourself with the advanced topics of robotics and mechatronics research. The seminar consists of a literature study, including a report and a presentation. | ||||
Objective | The students are familiar with the challenges of the fascinating and interdisciplinary field of Robotics and Mechatronics. They are introduced in the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently. | ||||
Content | This 4 ECTS course requires each student to discuss a study plan with the lecturer and select minimum 10 relevant scientific publications to read through. At the end of semester, the results should be presented in an oral presentation and summarized in a report. |