Hans Rudolf Heinimann: Catalogue data in Spring Semester 2016 |
Name | Prof. em. Dr. Hans Rudolf Heinimann |
Field | Forstliches Ingenieurwesen |
Address | Inst. f. Terrestrische Oekosysteme ETH Zürich, CHN F 73.2 Universitätstrasse 16 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 32 35 |
hans.heinimann@env.ethz.ch | |
Department | Environmental Systems Science |
Relationship | Professor emeritus |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
364-1058-00L | Risk Center Seminar Series Number of participants limited to 50. | 0 credits | 2S | B. Stojadinovic, K. W. Axhausen, D. Basin, A. Bommier, L.‑E. Cederman, P. Embrechts, H. Gersbach, H. R. Heinimann, D. Helbing, H. J. Herrmann, W. Mimra, G. Sansavini, F. Schweitzer, D. Sornette, B. Sudret, U. A. Weidmann | |
Abstract | This course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling and governing complex socio-economic systems, and managing risks and crises. Students and other guests are welcome. | ||||
Learning objective | Participants should learn to get an overview of the state of the art in the field, to present it in a well understandable way to an interdisciplinary scientific audience, to develop novel mathematical models and approaches for open problems, to analyze them with computers or other means, and to defend their results in response to critical questions. In essence, participants should improve their scientific skills and learn to work scientifically on an internationally competitive level. | ||||
Content | This course is a mixture between a seminar primarily for PhD and postdoc students and a colloquium involving invited speakers. It consists of presentations and subsequent discussions in the area of modeling complex socio-economic systems and crises. For details of the program see the webpage of the seminar. Students and other guests are welcome. | ||||
Lecture notes | There is no script, but the sessions will be recorded and be made available. Transparencies of the presentations may be put on the course webpage. | ||||
Literature | Literature will be provided by the speakers in their respective presentations. | ||||
Prerequisites / Notice | Participants should have relatively good scientific, in particular mathematical skills and some experience of how scientific work is performed. | ||||
701-0352-00L | Analysis and Assessment of Environmental Sustainability | 6 credits | 4G | C. E. Pohl, R. Frischknecht, H. R. Heinimann, A. Hilbeck | |
Abstract | The lecture introduces to methods and approaches that have been developed to systematically measure, assess and minimize environmental impacts of new substances, technologies, products, services, construction projects etc. Three of this methods will be dealt with in detail: Environmental Risk Assessment (EnRA), Life Cycle Assessment (LCA) and Environmental Impact Assessment (EIA). | ||||
Learning objective | Students have an overview of the current methods of analysis and assessment of environmental impacts. Students know the problems that each method is designed to address. Students have detailed knowledge of the methods of Environmental Risk Assessment, Life Cycle Assessment, and Environmental Impact Assessment. They are able to adopt the three methods to case studies. | ||||
Content | During the last decades various methods and approaches have been developed to systematically measure, assess and minimize environmental impacts of new substances, technologies, products, services, construction projects etc.. Such methods are e.g. Environmental Risk Assessment (EnRA), Substance Flow Analysis (SFA), Life Cycle Assessment (LCA), Integrated Assessment (IA), Technology Assessment (TA), Environmental Impact Assessment (EIA) or Environmental Audits. The lecture gives an introduction to these methods and shows examples of their practical use. The lectures consists of 4 parts (a) Overview of methods, (b) Environmental Risk Assessment (EnRA), (c) Life Cycle Assessment (LCA), (d) Environmental Impact Assessment (EIA) Exercises form an integral part of the lecture | ||||
Lecture notes | yes | ||||
Literature | see Skript | ||||
701-0554-00L | Control and Development of Rural Land-Use Systems | 3 credits | 2G | H. R. Heinimann | |
Abstract | The learning unit develops an understanding how sectors of the earth surface develop in the long run. Forestry yield regulatory systems are treated in depth because they emerged at the beginning of the sustainability debate. The learning unit introduces the Swiss spatial development and planning system, and the foresrty planning system and mechanisms | ||||
Learning objective | Die erfolgreiche Absolvierung der Lerneinheit befähigt Studierende: o Raumentwicklung als ein öffentliches, kooperatives Entscheidungs- und Handlungssystem zu verstehen und zu erklären, bei dem Planung den Teil des systematischen, nachvollziehbaren Entscheidens vorbereitet, o Die Wechselwirkung zwischen verschiedenen Landnutzungsmodellen und Systemen und der gesellschaftlich erwarteten Bereitstellung von Oekosystemgütern und -leistungen sowie deren geschichtliche Entwicklung zu verstehen bzw. zu gestalten, o Raumnutzungs-spezifische Planungssysteme verstehen, erklären und beurteilen, o Planungsprozesse als systematische Verfahren kooperativer Koordination und Problemlösung verstehen und unterstützen, o Probleme und Herausforderungen der heutigen Raumentwicklungssysteme zu identifizieren und Optionen für ihre gezielte Veränderung erkennen. | ||||
Content | 1. Systeme der Raumentwicklung o Raum als System menschlichen Entscheidens und Handelns (Williamson's 4-Schalenmodell), o Institutionen (Spielregeln) der Raumentwicklung (Schale 3), o Governance als Zuweisung von Verfügungsrechten (Schale 2), o Problem der optimalen Ressourcenallokation (Schale 1). 2. Störungsmuster als treibende Kräfte der Landschaftsgestaltung o Natur- und Umweltgefahren o Risiko-Management-Philosophie o Schnittstellen zur Landnutzung 3. Landnutzungsmodelle und -systeme o Mittelalterliches Dorf: Wurzeln der kooperativen, genossenschaftlichen Landnutzung o Wissenschaftlich-rationale Gestaltung der Nutzung (v. Thünen, Faustmann, neuere Entwicklungen NIPF, Adaptive Ecosystem Management) o Waldnutzungssysteme o Räumliche und zeitliche Ordnung als Voraussetzung zielorientierten Gestaltens und Lenkens der Landnutzung o Geschichtlicher Abriss der Entstehung von Waldnutzungssystemen o Fibre Farming und Plantagen-Wirtschaft o Systeme mit statischer räumlich-zeitlicher Ordnung o Systeme mit adaptiver räumlich-zeitlicher Ordnung (z.B. Schweiz Walbausysteme) o Dauerwaldsysteme o Oekosystemmanagement-Ansätze: Beispiel der Koordination räumlicher Störungsmuster auf Einzugsgebietsebene und des Schlag-Layouts auf Betriebsebene 4. Planungshierarchien und -systeme o Entscheidungsprobleme der Landnutzung o Instrumente der Raumplanung o Schnittstellen mit sachgebietsbezogenen Planungen, o Entwicklungsplanung, mittel- bis langfristige Definition bereitzustellender Oekosystemgüter und Dienstleistungen, o Betriebsplan o Strategieentwicklung auf betrieblicher Ebene unter öffentlichen Nebenbedingungen. o Holzernte- und Ausführungsplanung als Problem des optimalen Ressourceneinsatzes 5. Planungsprozesse o Weltbilder und Planungsansätze, o Rationaler Problemlösungs-Zyklus als Phasenmodell systematischen Entscheidungsvorbereitens, o Methoden zur Erfassung und Beschreibung des Systemzustands und der Systementwicklung, o Entscheidungsunterstützung mit Modellen und Tools, o Verfahren und Systeme der öffentlichen Mitwirkung, 6. Herausforderungen an die Raumentwicklung der Zukunft o Umlagerung von Nutzungsaktivitäten als Hauptherausforderung o Moegliche Mechanismen | ||||
Lecture notes | Students will get lecture notes | ||||
Literature | German | ||||
701-1542-00L | Transportation and Harvesting Systems of Land-Use | 4 credits | 2G | H. R. Heinimann | |
Abstract | The learning unit (LU) enables (1) to physically delineate ground-, air- and cable-borne harvesting systems, (2) to analyze the effectiveness of road networks, (3) to compare configurations of harvesting systems, and (4) to assess environmental impacts. Assignments are going along with the LU: (1) GIS-based analysis of road network effectiveness, and (2) feasibility limits of equipment. | ||||
Learning objective | - identify, quantify and assess transportation requirements of agricultural and forest production, - review the state-of-the-art of ground-based, cable-based, and air-borne harvesting and transportation systems, and assess their physical feasibility, economical efficiency, and ecological soundness, - understand the adaptation of road network models to specific terrain conditions and management regimes, - use road network and harvest layout planning as a model to analyse the trade-offs between fulfilling transportation requirements, maximizing economical efficiency, and minimizing environmental impacts, | ||||
Content | 1. Interactions between land-use activities and transportation systems. 2. Transportation systems in a world-wide perspective: [1] on-road systems, [2] off-road systems: (a) ground-based, (b) cable-based, (3) air-borne. 3. Harvesting systems in a world-wide perspective: Essence of forest operations engineering. Functions and structure of production systems. Principles for the design of harvesting systems. Process capabilities and limitations (trafficability, processing, handling, identification, control) 4. Transportation models for trafficable and non-trafficable terrain conditions. Optimization of transportation models (optimal road spacing, or optimal road density, respectively). Design and layout of road networks. 5. Analysis of ecological risks related with transportation and harvesting. Risk concept and decisive risks. | ||||
Lecture notes | Lecture notes will be handed out | ||||
Literature | Unfortunately, there are no up-to-date textbooks available | ||||
Prerequisites / Notice | The learning unit consists two homework-assignments, which students have to solve, to document, and to hand in: [1] Analysis of structure and behavior of a supply network (process chart, input-output model) [2] GIS-based analysis of a given transportation network, and derivation of network performance metrics. | ||||
701-1692-00L | Interdisciplinary Project | 5 credits | 8P | F. Knaus, H. Bugmann, H. R. Heinimann, F. Kienast | |
Abstract | Capstone course to solve complex real-world land-use problems, for which there is no single correct solution. Students work in project teams and take the role of a consultancy office. They integrate the knowledge acquired during their previous studies and deepen their analysis, judgment and writing skills. | ||||
Learning objective | The project-based learning context aims at developing and sharpening the following skills: - to autonomously solve a real-world problem from the project assignment to the presentation of results, - to apply, integrate and adapt knowledge and skills from different disciplines, - to adequately use methods and tools to manage spatial and scalar data, - to work in a project team and to solve possible team-conflicts. | ||||
Content | Each student group is working on a case-study, which is based on a project area specific problem, defined by cantonal decision makers. Students are searching information from literature, are gathering own data, are analyzing (geo)data and write a coherent report. Original plans and source documents are only available in their original language. Students follow and adapt a systematic problem solving cycle, consisting of: - capturing and formulation of the problem, goal and scope definition - capturing of the actual system state - developing a model of system behavior to make predictions of system responses due to altered structures and/or functions - evaluating possible solutions and/or scenarios - solution proposal and recommendation to decision-makers | ||||
Prerequisites / Notice | Maximum number of students limited | ||||
701-1808-00L | Soil Bioengineering | 2 credits | 2G | H. R. Heinimann, F. Graf, M. Oplatka | |
Abstract | The learning unit introduces erosion and instability phenomena on hill-slopes and slopes, evaluating options and constraints of protective effects of organisms against those phenomena. Next, the LU explores the translation of protection requirements into soilbioengineering solutions, and analyses their effectiveness, and their effects on the natural and social environment. | ||||
Learning objective | Understand erosion and mass movement processes on slopes and embankments. Understand possibilities and limitations of the soil retaining and stabilization effects of organisms. Transform erosion and instability control re-quirements into geotechnical/biological concepts (Solution definition process). Analyses of the solution with regard to functional requirements, biological effects, and impacts on the physical and social environment (System Analysis process). | ||||
Content | Erosion and instability phenomena on slopes and embankments. Approaches to influence erosion and instability processes. Effect of vegetation cover. Methods of soil bioengineering. Selection and procurement of plant materials. Engineering methodology (Problem definition, hazard, scenarios, safety plan, solution concept, analysis and evalua-tion. Basics of construction techniques, maintenance and rehabilitation. Case studies. | ||||
Lecture notes | Material will be handed out. | ||||
Literature | - Kuonen, V., 1983: Wald- und Güterstrassen, Planung - Projektierung - Bau. Eigenverlag, Lindenweg 9, 8122 Pfaffhausen. 743 S. - Schiechtl, H., 1973: Sicherungsarbeiten im Landschaftsbau. Grundlagen, lebende Baustoffe, Methoden. Call-wey. München. 244 S. - Gray, D.H., Sotir, R.B., 1996: Biotechnical and soil bioengineering slope stabilization: a practical guide for erosion control. New York (etc.): Wiley, cop., 378 S. "A Wiley-Interscience publication" |