Name | Dr. Erich Christian Meister |
erich.meister@phys.chem.ethz.ch | |
Department | Chemistry and Applied Biosciences |
Relationship | Lecturer |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
529-0011-04L | Practical Course General Chemistry Latest online enrolment is 19.09.2016. Information about the practical course will be given on the first day. | 8 credits | 12P | H. V. Schönberg, E. C. Meister | |
Abstract | Qualitative analysis (determination of cations and anions), acid-base-equilibria (pH- values, titrations, buffer), precipitation equilibria (gravimetry, potentiometry, conductivity), redoxreactions (syntheses, redox-titrations, galvanic elements), metal complexes (syntheses, complexometric titration) analysis of measured values, states of aggregation (vapour pressure, conductivity, calorimetry) | ||||
Learning objective | Qualitative analysis (simple cation and anion separation process, determination of cations and anions), acid-base-equilibria (strengths of acids and bases, pH- and pKa-values, titrations, buffer systems, Kjeldahl determination), precipitation equilibria (gravimetry, potentiometry, conductivity), oxidation state and redox behaviour (syntheses), redox-titrations, galvanic elements), metal complexes (syntheses of complexes, ligand exchange reactions, complexometric titration) analysis of measured values (measuring error, average value, error analysis), states of aggregation (vapour pressure), characteristics of electrolytes (conductivity measurements), thermodynamics (calorimetry) | ||||
Content | The general aim for the students of the practical course in general chemistry is an introduction in the scientific work and to get familiar with simple experimental procedures in a chemical laboratory. In general, first experiences with the principal reaction behaviour of a variety of different substances will be made. The chemical characteristics of these will be elucidated by a series of quantitative experiments alongside with the corresponding qualitative analyses. In order to get an overview of classes of substances as well as some general phenomena in chemistry suitable experiments have been chosen. In the second part of the practical course, i.e. physical chemistry, the behaviour of substances in their states of aggregation as well as changes of selected physical values will be recorded and discussed. | ||||
Lecture notes | http://www.gruetzmacher.ethz.ch/education/labcourses | ||||
Prerequisites / Notice | Compulsory: online enrolment latest one week prior start of the semester | ||||
529-0449-00L | Spectroscopy | 13 credits | 13P | E. C. Meister, G. Jeschke, B. H. Meier, F. Merkt, R. Riek, R. Signorell, H. J. Wörner | |
Abstract | Laboratory experiments to acquire a profound knowledge of spectroscopical methods and techniques in chemistry. Evaluation and visualization of measurement data. Writing lab reports. | ||||
Learning objective | Laboratory experiments to acquire a profound knowledge of spectroscopical methods and techniques in chemistry. Evaluation and visualization of measurement data. Writing lab reports. | ||||
Content | Laboratory experiments: UV/VIS spectroscopy, luminescence spectroscopy, FT infrared spectroscopy, dye laser, light diffraction and refraction, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), FT nuclear magnetic resonance spectroscopy (NMR), electron paramagnetic resonance spectroscopy (EPR), atomic force microscopy (AFM), Fourier transform methods. | ||||
Lecture notes | Detailed documentations to each experiment will be handed out. E. Meister, Grundpraktikum Physikalische Chemie, 2. Auflage, vdf Hochschulverlag an der ETH, Zürich 2012. | ||||
Prerequisites / Notice | Praktikum Physikalische und Analytische Chemie (529-0054-00) or Praktikum Physikalische Chemie (529-0054-01). | ||||
529-2001-02L | Chemistry I | 4 credits | 2V + 2U | W. Uhlig, J. E. E. Buschmann, S. Canonica, P. Funck, E. C. Meister, R. Verel | |
Abstract | General Chemistry I: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium. | ||||
Learning objective | Introduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems. | ||||
Content | 1. Stoichiometry 2. Atoms and Elements (Quantenmechanical Model of the Atom) 3. Chemical Bonding 4. Thermodynamics 5. Chemical Kinetics 6. Chemical Equilibrium (Acids and Bases, Solubility Equilibria) | ||||
Lecture notes | Online-Skript mit durchgerechneten Beispielen. | ||||
Literature | - Charles E. Mortimer, Chemie - Das Basiswissen der Chemie. 12. Auflage, Georg Thieme Verlag Stuttgart, 2015. Weiterführende Literatur: Brown, LeMay, Bursten CHEMIE (deutsch) Housecroft and Constable, CHEMISTRY (englisch) Oxtoby, Gillis, Nachtrieb, MODERN CHEMISTRY (englisch) |