Gianni Blatter: Katalogdaten im Herbstsemester 2020

NameHerr Prof. em. Dr. Gianni Blatter
LehrgebietTheoretische Physik
Adresse
Institut für Theoretische Physik
ETH Zürich, HIT K 43.3
Wolfgang-Pauli-Str. 27
8093 Zürich
SWITZERLAND
Telefon+41 44 633 25 68
E-Mailjohann.blatter@itp.phys.ethz.ch
DepartementPhysik
BeziehungProfessor emeritus

NummerTitelECTSUmfangDozierende
402-0501-00LSolid State Physics0 KP1SA. Zheludev, G. Blatter, C. Degen, K. Ensslin, D. Pescia, M. Sigrist, A. Wallraff
KurzbeschreibungResearch colloquium
Lernziel
402-0861-00LStatistical Physics10 KP4V + 2UG. Blatter
KurzbeschreibungThe lecture focuses on classical and quantum statistical physics. Various techniques, cumulant expansion, path integrals, and specific systems are discussed: Fermions, photons/phonons, Bosons, magnetism, van der Waals gas. Phase transitions are studied in mean field theory (Weiss, Landau). Including fluctuations leads to critical phenomena, scaling, and the renormalization group.
LernzielThis lecture gives an introduction into the basic concepts and applications of statistical physics for the general use in physics and, in particular, as a preparation for the theoretical solid state physics education.
InhaltThermodynamics, three laws of thermodynamics, thermodynamic potentials, phenomenology of phase transitions.
Classical statistical physics: micro-canonical-, canonical-, and grandcanonical ensembles, applications to simple systems.
Quantum statistical physics: single particle, ideal quantum gases, fermions and bosons, statistical interaction.
Techniques: variational approach, cumulant expansion, path integral formulation.
Degenerate fermions: Fermi gas, electrons in magnetic field.
Bosons: photons and phonons, Bose-Einstein condensation.
Magnetism: Ising-, XY-, Heisenberg models, Weiss mean-field theory.
Van der Waals gas-liquid transition in mean field theory.
General mean-field (Landau) theory of phase transitions, first- and second order, tricritical point.
Fluctuations: field theory approach, Gauss theory, self-consistent field, Ginzburg criterion.
Critical phenomena: scaling theory, universality.
Renormalization group: general theory and applications to spin models (real space RG), phi^4 theory (k-space RG), Kosterlitz-Thouless theory.
SkriptLecture notes available in English.
LiteraturNo specific book is used for the course. Relevant literature will be given in the course.