Gianni Blatter: Katalogdaten im Frühjahrssemester 2020 |
Name | Herr Prof. em. Dr. Gianni Blatter |
Lehrgebiet | Theoretische Physik |
Adresse | Institut für Theoretische Physik ETH Zürich, HIT K 43.3 Wolfgang-Pauli-Str. 27 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 25 68 |
johann.blatter@itp.phys.ethz.ch | |
Departement | Physik |
Beziehung | Professor emeritus |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
402-0206-00L | Quantum Mechanics II | 10 KP | 3V + 2U | G. Blatter | |
Kurzbeschreibung | Many-body quantum physics rests on symmetry considerations that lead to two kinds of particles, fermions and bosons. Formal techniques include Hartree-Fock theory and second-quantization techniques, as well as quantum statistics with ensembles. Few- and many-body systems include atoms, molecules, the Fermi sea, elastic chains, radiation and its interaction with matter, and ideal quantum gases. | ||||
Lernziel | Basic command of few- and many-particle physics for fermions and bosons, including second quantisation and quantum statistical techniques. Understanding of elementary many-body systems such as atoms, molecules, the Fermi sea, electromagnetic radiation and its interaction with matter, ideal quantum gases and relativistic theories. | ||||
Inhalt | The description of indistinguishable particles leads us to (exchange-) symmetrized wave functions for fermions and bosons. We discuss simple few-body problems (Helium atoms, hydrogen molecule) und proceed with a systematic description of fermionic many body problems (Hartree-Fock approximation, screening, correlations with applications on atomes and the Fermi sea). The second quantisation formalism allows for the compact description of the Fermi gas, of elastic strings (phonons), and the radiation field (photons). We study the interaction of radiation and matter and the associated phenomena of radiative decay, light scattering, and the Lamb shift. Quantum statistical description of ideal Bose and Fermi gases at finite temperatures concludes the program. If time permits, we will touch upon of relativistic one particle physics, the Klein-Gordon equation for spin-0 bosons and the Dirac equation describing spin-1/2 fermions. | ||||
Skript | Quanten Mechanik I und II in German. | ||||
Literatur | G. Baym, Lectures on Quantum Mechanics (Benjamin, Menlo Park, California, 1969) L.I. Schiff, Quantum Mechanics (Mc-Graw-Hill, New York, 1955) A. Messiah, Quantum Mechanics I & II (North-Holland, Amsterdam, 1976) E. Merzbacher, Quantum Mechanics (John Wiley, New York, 1998) C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics I & II (John Wiley, New York, 1977) P.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (Mc Graw-Hill, New York, 1965) A.L. Fetter and J.D. Walecka, Theoretical Mechanics of Particles and Continua (Mc Graw-Hill, New York, 1980) J.J. Sakurai, Modern Quantum Mechanics (Addison Wesley, Reading, 1994) J.J. Sakurai, Advanced Quantum mechanics (Addison Wesley) F. Gross, Relativistic Quantum Mechanics and Field Theory (John Wiley, New York, 1993) | ||||
Voraussetzungen / Besonderes | Basic knowledge of single-particle Quantum Mechanics | ||||
402-0501-00L | Solid State Physics | 0 KP | 1S | G. Blatter, C. Degen, K. Ensslin, D. Pescia, M. Sigrist, A. Wallraff, A. Zheludev | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel |