Name | Prof. em. Dr. Michael Struwe |
Field | Mathematik |
Address | Dep. Mathematik ETH Zürich, HG G 50.1 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telephone | +41 44 633 81 48 |
Fax | +41 44 632 14 74 |
michael.struwe@math.ethz.ch | |
URL | http://www.math.ethz.ch/~struwe |
Department | Mathematics |
Relationship | Professor emeritus |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
401-2303-00L | Complex Analysis | 6 credits | 3V + 2U | M. Struwe | |
Abstract | Complex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem. | ||||
Learning objective | Working knowledge of functions of one complex variables; in particular applications of the residue theorem. | ||||
Literature | E.M. Stein, R. Shakarchi: Complex Analysis. Princeton University Press, 2010 Th. Gamelin: Complex Analysis. Springer 2001 E. Titchmarsh: The Theory of Functions. Oxford University Press D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German) L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co. B. Palka: "An introduction to complex function theory." Undergraduate Texts in Mathematics. Springer-Verlag, 1991. R.Remmert: Theory of Complex Functions. Springer Verlag | ||||
401-5350-00L | Analysis Seminar | 0 credits | 1K | M. Struwe, A. Carlotto, F. Da Lio, A. Figalli, N. Hungerbühler, T. Ilmanen, T. Rivière, University lecturers | |
Abstract | Research colloquium | ||||
Learning objective | |||||
406-2303-AAL | Complex Analysis Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 6 credits | 13R | M. Struwe | |
Abstract | Complex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, conformal mappings, Riemann mapping theorem. | ||||
Learning objective | |||||
Literature | L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co. B. Palka: "An introduction to complex function theory." Undergraduate Texts in Mathematics. Springer-Verlag, 1991. R.Remmert: Theory of Complex Functions.. Springer Verlag E.Hille: Analytic Function Theory. AMS Chelsea Publication |