Konstantinos Boulouchos: Catalogue data in Spring Semester 2020 |
Name | Prof. em. Dr. Konstantinos Boulouchos |
Field | Aerothermochemie und Verbrennungssysteme |
kboulouchos@ethz.ch | |
Department | Mechanical and Process Engineering |
Relationship | Professor emeritus |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
151-0052-00L | Thermodynamics II | 4 credits | 2V + 2U | K. Boulouchos, D. Poulikakos | |
Abstract | Introduction to thermodynamics of reactive systems and to the fundamentals of heat transfer. | ||||
Objective | Introduction to the theory and to the fundamentals of the technical thermodynamics. Main focus: Chemical thermodynamics and heat transfer | ||||
Content | 1st and 2nd law of thermodynamics for chemically reactive systems, chemical exergy, fuel cells and kinetic gas theory. General mechanisms of heat transfer. Introduction to heat conductivity. Stationary 1-D and 2-D heat conduction. Instationary conduction. Convection. Forced convection - flow around and through bodies. Natural convection. Evaporation (boiling) and condensation. Heat radiation. Combined heat transfer. | ||||
Lecture notes | Slides and lecture notes in German. | ||||
Literature | F.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 6th edition, 2006. M.J. Moran, H.N. Shapiro, Fundamentals of Engineering Thermodynamics, John Wiley & Sons, 2007. | ||||
151-0226-00L | Energy and Transport Futures | 4 credits | 3G | K. Boulouchos, P. J. de Haan van der Weg, G. Georges | |
Abstract | The course teaches to view local energy solutions as part of the larger energy system. Because it powers all sectors, local changes can have consequences reaching well beyond one sector. While we explore all sectors, we put a particular emphasis on mobility and its unique challenges. We not only cover engineering aspects, but also policymaking and behavioral economics. | ||||
Objective | The main objectives of this lecture are: (i) Systemic view on the Energy Sytem with emphasis on Transport Applications (ii) Students can assess the reduction of energy demand (or greenhouse gas emissions) of sectoral solutions. (iii) Students understand the advantages and disadvantages of technology options in mobility (iv) Students know policy tools to affect change in mobility, and understand the rebound effect. | ||||
Content | The course describes the role of energy system plays for the well-being of modern societies, and drafts a future energy system based on renewable energy sources, able to meet the demands of the sectors building, industry and transport. The projected Swiss energy system is used as an example. Students learn how all sectoral solutions feedback on the whole system and how sector coupling could lead to optimal transformation paths. The course then focuses on the history, status quo and technical potentials of the transport sector. Policy mixes to reduce energy demand and CO2 emissions from transport are introduced. Both direct and indirect effects of different policy types are discussed. Concepts from behavioral economics (car purchase behavior and rebound effects) are presented. Preliminary schedule: Block 1. Energy technologies and policies. Climate, Environment, Security of Supply.Technology options and policies in power generation, building and industrial sectors . Block 2. Transport technologies. Technology options in mobility and their physical aspects Block 3. Transport policies Regulation, policy tools and technological potential to affect change in mobility Block 4. Energy and Transport Futures Closing loop across all sectors. Sector-coupling. | ||||
Lecture notes | t.b.d. | ||||
Literature | t.b.d. | ||||
151-0254-00L | Environmental Aspects of IC-Engines | 4 credits | 2V + 1U | K. Boulouchos, C. Barro, P. Dimopoulos Eggenschwiler, Y. Wright | |
Abstract | Turbulent flowfield in IC engines. Ignition, premixed flame propagation, knock in homogeneous charge, external ignition engines (otto). Compression-ignition diesel engines, incl. mixture formation and HCCI concepts. Direct ignition. Pollutant formation mechanism (NOx, particulates, unburned hydrocarbons) and their minimization. Catalytic exhaust aftertreatment methods for all pollutant categories. | ||||
Objective | The students get a further insight in the internal combustion engine by means of the topics mentioned in the abstract. This knowledge is applied in several calculation exercises and lab exercises at the engine test bench. The students additionally get an introduction in exhaust gas aftertreatment systems. | ||||
Lecture notes | Handouts are in German and English. | ||||
Literature | J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill Mechanical Engineering | ||||
Prerequisites / Notice | This course is a natural extension of the course 'IC-Engines and Propulsion Systems I' (151-0251-00L). The content of that lecture is assumed known. Basic knowledge of thermodynamics and combustion is required. It is beneficial to have attended the course 'Combustion and Reactive Processes in Energy and Materials Technology' (151-0293-00L). | ||||
151-1053-00L | Thermo- and Fluid Dynamics | 0 credits | 2K | P. Jenny, R. S. Abhari, K. Boulouchos, G. Haller, C. Müller, N. Noiray, D. Poulikakos, H.‑M. Prasser, T. Rösgen, A. Steinfeld | |
Abstract | Current advanced research activities in the areas of thermo- and fluid dynamics are presented and discussed, mostly by external speakers. The talks are public and open also for interested students. | ||||
Objective | Knowledge of advanced research in the areas of thermo- and fluid dynamics | ||||
Content | Current advanced research activities in the areas of thermo- and fluid dynamics are presented and discussed, mostly by external speakers. |