Suchergebnis: Katalogdaten im Frühjahrssemester 2018
Mikro- und Nanosysteme Master ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
227-0198-00L | Wearable Systems II: Design and Implementation ![]() The course is offered for the last time in the Spring Semester 2018. Please note the specific provisions for the performance assessment. | W | 6 KP | 4G | G. Tröster | |
Kurzbeschreibung | Concepts and methods to integrate mobile computers into our daily outfit. Textile sensors: strain, pressure, temperature, ECG, EMG New substrates (eTextile, Smart Textile), organic material (foils) State-of-the-art in Wearable Systems and components Economical conditions Evaluation of research institutions, groups, projects and proposals. | |||||
Lernziel | To integrate wearable computers also commercially successful in our daily outfit, innovative sensing and communication technologies as well as economical and ethical aspects have to be considered. The course deals with > Textile Sensors: strain, pressure, temperature, ECK, EMG, ... > Packaging: new substrates (eTextiles), organic material (foils) > State-of-the-art and research in Wearable components and systems. > Privacy and Ethics Using a business plan we will practice the commercialisation of our 'Wearable Computers'. Supported by a wiki-tool the course is organized as a seminar, in which the addressed topics are jointly discussed considering the aspect 'Concept of a research proposal'. According to the ETH 'critical thinking initiative' we will analyse and reflect implementation concepts incorporating the social and scientific context. Presentations alternate with workshops and discussions. Instead of an oral examination a thesis in a form of a project proposal can be submitted. The audience determines the used language (German or English) | |||||
Inhalt | To integrate wearable computers also commercially successful in our daily outfit, innovative sensing and communication technologies as well as economical and ethical aspects have to be considered. The course deals with > Textile Sensors: strain, pressure, temperature, ECK, EMG, ... > Packaging: new substrates (eTextiles), organic material (foils) > State-of-the-art and research in Wearable components and systems.. > Privacy and Ethics Using a business plan we will practice the commercialisation of our 'Wearable Computers'. Supported by a wiki-tool the course is organized as a seminar, in which the addressed topics are jointly discussed considering the aspect 'Concept of a research proposal'. According to the ETH 'critical thinking initiative' we will analyse and reflect implementation concepts incorporating the social and scientific context. Presentations alternate with workshops and discussions. Instead of an oral examination a thesis in a form of a project proposal can be submitted. The audience determines the used language (German or English) | |||||
Skript | A wiki-tool will be available for the internal communication; that includes lecture notes for all lessons, assignments and solutions. http://www.ife.ee.ethz.ch/education/wearable-systems-ii.html | |||||
Literatur | Will be provided in the course material | |||||
Voraussetzungen / Besonderes | Supported by a wiki-tool the course is organized as a seminar, in which the addressed topics are jointly discussed considering the aspect 'Concept of a research proposal'. According to the ETH 'critical thinking initiative' we will analyse and reflect implementation concepts incorporating the social and scientific context. Presentations alternate with workshops and discussions. Instead of an oral examination a thesis in a form of a project proposal can be submitted. The audience determines the date and the used language (German or English) No special prerequisites, also not the participation of 'Wearable Systems 1' | |||||
227-0303-00L | Advanced Photonics | W | 6 KP | 2V + 1U + 1A | A. Dorodnyy, A. Emboras, M. Burla, P. Ma, T. Watanabe | |
Kurzbeschreibung | Lecture gives comprehensive insight into nano-scale photonic devices, physical fundamentals behind, simulation techniques and an overview of the design and fabrication. Following applications of nano-scale photonic structures are discussed: waveguides, fiber couplers, light sources, modulators and detectors, photovoltaic cells, atomic-level devices, integrated microwave/optical devices. | |||||
Lernziel | General training in advanced photonic device design with an overview of simulation, fabrication, and characterization techniques. Hands-on experience with photonic and optoelectronic device modeling and simulation. | |||||
Skript | The presentation and the lecture notes will be provided every week. | |||||
Literatur | Prof. Thomas Inn: Semiconductor Nanostructures, Oxford University Press Prof. Peter Wurfel: Physics of Solar Cells, Wiley Prof. H. Gatzen, Prof. Volker Saile, Prof. Juerg Leuthold: Micro and Nano Fabrication, Springer | |||||
Voraussetzungen / Besonderes | Basic knowledge of semiconductor physics, physics of the electromagnetic filed and thermodynamics. | |||||
227-0966-00L | Quantitative Big Imaging: From Images to Statistics | W | 4 KP | 2V + 1U | K. S. Mader, M. Stampanoni | |
Kurzbeschreibung | The lecture focuses on the challenging task of extracting robust, quantitative metrics from imaging data and is intended to bridge the gap between pure signal processing and the experimental science of imaging. The course will focus on techniques, scalability, and science-driven analysis. | |||||
Lernziel | 1. Introduction of applied image processing for research science covering basic image processing, quantitative methods, and statistics. 2. Understanding of imaging as a means to accomplish a scientific goal. 3. Ability to apply quantitative methods to complex 3D data to determine the validity of a hypothesis | |||||
Inhalt | Imaging is a well established field and is rapidly growing as technological improvements push the limits of resolution in space, time, material and functional sensitivity. These improvements have meant bigger, more diverse datasets being acquired at an ever increasing rate. With methods varying from focused ion beams to X-rays to magnetic resonance, the sources for these images are exceptionally heterogeneous; however, the tools and techniques for processing these images and transforming them into quantitative, biologically or materially meaningful information are similar. The course consists of equal parts theory and practical analysis of first synthetic and then real imaging datasets. Basic aspects of image processing are covered such as filtering, thresholding, and morphology. From these concepts a series of tools will be developed for analyzing arbitrary images in a very generic manner. Specifically a series of methods will be covered, e.g. characterizing shape, thickness, tortuosity, alignment, and spatial distribution of material features like pores. From these metrics the statistics aspect of the course will be developed where reproducibility, robustness, and sensitivity will be investigated in order to accurately determine the precision and accuracy of these quantitative measurements. A major emphasis of the course will be scalability and the tools of the 'Big Data' trend will be discussed and how cluster, cloud, and new high-performance large dataset techniques can be applied to analyze imaging datasets. In addition, given the importance of multi-scale systems, a data-management and analysis approach based on modern databases will be presented for storing complex hierarchical information in a flexible manner. Finally as a concluding project the students will apply the learned methods on real experimental data from the latest 3D experiments taken from either their own work / research or partnered with an experimental imaging group. The course provides the necessary background to perform the quantitative evaluation of complicated 3D imaging data in a minimally subjective or arbitrary manner to answer questions coming from the fields of physics, biology, medicine, material science, and paleontology. | |||||
Skript | Available online. | |||||
Literatur | Will be indicated during the lecture. | |||||
Voraussetzungen / Besonderes | Ideally students will have some familiarity with basic manipulation and programming in languages like Matlab and R. Interested students who are worried about their skill level in this regard are encouraged to contact Kevin Mader directly (mader@biomed.ee.ethz.ch). More advanced students who are familiar with Java, C++, and Python will have to opportunity to develop more of their own tools. | |||||
402-0448-01L | Quantum Information Processing I: Concepts Dieser theoretisch ausgerichtete Teil QIP I bildet zusammen mit dem experimentell ausgerichteten Teil 402-0448-02L QIP II, die beide im Frühjahrssemester angeboten werden, das experimentelle Kernfach "Quantum Information Processing" mit total 10 ECTS-Kreditpunkten. | W | 5 KP | 2V + 1U | L. Pacheco Cañamero B. del Rio | |
Kurzbeschreibung | The course will cover the key concepts and ideas of quantum information processing, including descriptions of quantum algorithms which give the quantum computer the power to compute problems outside the reach of any classical supercomputer. Key concepts such as quantum error correction will be described. These ideas provide fundamental insights into the nature of quantum states and measurement. | |||||
Lernziel | We aim to provide an overview of the central concepts in Quantum Information Processing, including insights into the advantages to be gained from using quantum mechanics and the range of techniques based on quantum error correction which enable the elimination of noise. | |||||
Inhalt | The topics covered in the course will include 1. Entanglement 2. Circuits, circuit elements, universality 3. Efficiency ideas, Gottesmann Knill 4. Teleportation + dense coding 5. Swapping/Gate Teleportation 6. Algorithms: Shor, Grover, 7. Deutsch-Josza, simulations of local systems 8. Cryptography 9. Error correction, basic circuit, 10. ideas of construction, Fault-tolerant design, | |||||
Skript | Will be made available on the Moodle for the course. More details to follow. | |||||
Literatur | Quantum Computation and Quantum Information Michael Nielsen and Isaac Chuang Cambridge University Press | |||||
402-0448-02L | Quantum Information Processing II: Implementations Dieser experimentell ausgerichtete Teil QIP II bildet zusammen mit dem theoretisch ausgerichteten Teil 402-0448-01L QIP I, die beide im Frühjahrssemester angeboten werden, das experimentelle Kernfach "Quantum Information Processing" mit total 10 ECTS-Kreditpunkten. | W | 5 KP | 2V + 1U | A. Wallraff | |
Kurzbeschreibung | Introduction to experimental systems for quantum information processing (QIP). Quantum bits. Coherent Control. Measurement. Decoherence. Microscopic and macroscopic quantum systems. Nuclear magnetic resonance (NMR). Photons. Ions and neutral atoms in electromagnetic traps. Charges and spins in quantum dots and NV centers. Charges and flux quanta in superconducting circuits. Novel hybrid systems. | |||||
Lernziel | Throughout the past 20 years the realm of quantum physics has entered the domain of information technology in more and more prominent ways. Enormous progress in the physical sciences and in engineering and technology has allowed us to build novel types of information processors based on the concepts of quantum physics. In these processors information is stored in the quantum state of physical systems forming quantum bits (qubits). The interaction between qubits is controlled and the resulting states are read out on the level of single quanta in order to process information. Realizing such challenging tasks is believed to allow constructing an information processor much more powerful than a classical computer. This task is taken on by academic labs, startups and major industry. The aim of this class is to give a thorough introduction to physical implementations pursued in current research for realizing quantum information processors. The field of quantum information science is one of the fastest growing and most active domains of research in modern physics. | |||||
Inhalt | Introduction to experimental systems for quantum information processing (QIP). - Quantum bits - Coherent Control - Measurement - Decoherence QIP with - Ions - Superconducting Circuits - Photons - NMR - Rydberg atoms - NV-centers - Quantum dots | |||||
Skript | Course material be made available at www.qudev.ethz.ch and on the Moodle platform for the course. More details to follow. | |||||
Literatur | Quantum Computation and Quantum Information Michael Nielsen and Isaac Chuang Cambridge University Press | |||||
Voraussetzungen / Besonderes | The class will be taught in English language. Basic knowledge of concepts of quantum physics and quantum systems, e.g from courses such as Phyiscs III, Quantum Mechanics I and II or courses on topics such as atomic physics, solid state physics, quantum electronics are considered helpful. More information on this class can be found on the web site www.qudev.ethz.ch | |||||
402-0573-00L | Aerosols II: Applications in Environment and Technology | W | 4 KP | 2V + 1U | J. Slowik, U. Baltensperger, H. Burtscher | |
Kurzbeschreibung | Major topics: Important sources and sinks of atmospheric aerosols and their importance for men and environment. Particle emissions from combustion systems, means to reduce emissions like particle filters. | |||||
Lernziel | Profound knowledge about aerosols in the atmosphere and applications of aerosols in technology | |||||
Inhalt | Atmospheric aerosols: important sources and sinks, wet and dry deposition, chemical composition, importance for men and environment, interaction with the gas phase, influence on climate. Technical aerosols: combustion aerosols, techniques to reduce emissions, application of aerosols in technology | |||||
Skript | Information is distributed during the lectures | |||||
Literatur | - Colbeck I. (ed.) Physical and Chemical Properties of Aerosols, Blackie Academic & Professional, London, 1998. - Seinfeld, J.H., and S.N. Pandis, Atmospheric chemistry and physics, John Wiley, New York, (1998). | |||||
529-0502-00L | Catalysis LE wird im FS18 zum letzten Mal in dieser Form angeboten. | W | 4 KP | 3G | J. A. van Bokhoven, M. Ranocchiari | |
Kurzbeschreibung | Grundlagen der Adsorption und Katalyse, Physik und Chemie der Festkörperoberflächen, Methoden für die Bestimmung ihrer Struktur und Zusammensetzung. Homogene Katalyse mit Übergangsmetallkomplexen. | |||||
Lernziel | Ermittlung der Grundlagen der heterogenen und homogenen Katalyse | |||||
Inhalt | Grundlagen der Adsorption und Katalyse, Physik und Chemie der Festkörperoberflächen, Methoden für die Bestimmung ihrer Struktur und Zusammensetzung, thermodynamische und kinetische Grundlagen der heterogenen Katalyse (Physisorption, Chemisorption, kinetische Modellierung, Selektivität, Aktivität, Stabilität), Katalysatorentwicklung und -herstellung, homogene Katalyse mit Übergangsmetallkomplexen; katalytische Reaktionszyklen und -typen. | |||||
Skript | Unterlagen werden verteilt | |||||
Literatur | J.M. Thomas and W.J. Thomas, Heterogeneous Catalysis, VCH, 1997 Homogenkatalyse: Grundlagen: R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, Wiley, 2009 Industrieprozesse: G. P. Chiusoli, P. M. Maitlis, Metal-catalysis in Industrial Organic Processes, RSC Publishing, 2008 Online: Catalysis - An Integrated Approach to Homogeneous, Heterogeneous and Industrial Catalysis Edited by: J.A. Moulijn, P.W.N.M. van Leeuwen and R.A. van Santen Grundlagen Der Koordinationschemie: J. Huheey, E. Keiter, R. Keiter, Anorganische Chemie - Prinzipien von Struktur und Reaktivität, de Gruyter | |||||
529-0625-00L | Chemieingenieurwissenschaften | W | 3 KP | 3G | W. J. Stark | |
Kurzbeschreibung | Die Vorlesung Chemieingenieurwissenschaften vermittelt die Grundlagen zur Produktions- und Prozessplanung. Neben Reaktorenwahl, Reaktionsführung und Skalierung werden aktuelle Probleme grosstechnischer Prozesse und neue Syntheseverfahren behandelt. Heterogene Katalyse und Transport von Impuls, Masse und Energie verbindet den erarbeiteten Stoff mit der chemisch/biologischen Grundausbildung. | |||||
Lernziel | Die Vorlesung Chemie und Bio-Ingenieurwissenschaften im 4. Semester vermittelt Chemikern, Chemieingenieuren, Biochemikern und Biologen die Grundlagen zur Produktions- und Prozessplanung. Zuerst werden verschiedene Reaktoren, einzelne Prozess- und Verfahrensschritte sowie grosstechnische Aspekte von Chemikalien und Reagenzien eingeführt und anhand von aktuellen Produktionsbeispielen zusammengefügt. Betrachtungen im Bezug auf Materialverbrauch, Energiekosten und Nebenproduktbildung zeigen, wo modernes Engineering einen grossen Beitrag zur umweltfreundlichen Produktion leisten kann. In einem zweiten Teil werden chemische und biologische Vorgänge in Reaktoren, Zellen oder Lebewesen aus einer neuen Sichtweise behandelt. Transport von Impuls, Masse und Energie werden zusammen eingeführt und bilden eine Basis zum Verständnis von Strömungen, Diffusionsvorgängen und Wärmetransport. Mittels dimensionsloser Kennzahlen werden diese Transportvorgänge in die Planung der Produktion eingeführt und ein Ueberblick in die Grundoperationen der chemischen und biochemischen Industrie gegeben. Eine Einführung in heterogene Katalyse verbindet den erarbeiteten Stoff mit der chemisch/biologischen Basis und illustriert wie durch enges Zusammenspiel von Transport und Chemie/Biologie neue, sehr leistungsfähige Prozesse entwickelt werden können. | |||||
Inhalt | Elemente einer chemischen Umsetzung: Vorbereitung der Ausgangsstoffe, Reaktionsführung, Aufarbeitung/Rückführung, Produktreinigung; Kontinuierliche, halbkontinuierliche und diskontinuierliche Prozesse; Materialbilanzen: Chemische Reaktoren und Trennprozesse, zusammengesetzte und mehrstufige Systeme; Energiebilanzen: Chemische Reaktoren und Trennprozesse, Enthalpieänderungen, gekoppelte Material- und Energiebilanzen; Zusammengesetzte Reaktionen: Optimierung der Reaktorleistung, Ausbeute und Selektivität; Stofftransport und chemische Reaktion: Mischungseffekte in homogenen und heterogenen Systemen, Diffusion und Reaktion in porösen Materialien; Wärmeaustausch und chemische Reaktion: Adiabatische Reaktoren, optimale Betriebsweise bei exothermen und endothermen Gleichgewichtsreaktionen, thermischer Runaway, Reaktordimensionierung und Massstabvergrösserung (scale up). | |||||
Skript | Vorlesungsunterlagen können über die Homepage (www.fml.ethz.ch) bezogen werden. | |||||
Literatur | Literatur und Lehrbücher werden am Anfang der Vorlesung bekannt gegeben. | |||||
752-3000-00L | Lebensmittel-Verfahrenstechnik I | W | 4 KP | 3V | E. J. Windhab | |
Kurzbeschreibung | Die Vorlesung vermittelt die physikalischen Grundlagen der Lebensmittelverfahrenstechnik, insbesondere die mechanischen Eigenschaften von Lebensmittelsystemen. Es werden die Grundprinzipien der klassischen Mechanik, der Thermodynamik, der Fluiddynamik und der Dimensionsanalyse zur technischen Auslegung von Verarbeitungsprozessen eingeführt und in das nicht-Newtonsche Fliessverhalten. | |||||
Lernziel | 1. Verständnis der Grundprinzipien der Thermodynamik, Fluiddynamik und ingenieurtechnischen Apparateauslegung. 2. Anwendung dieser Prinzipien auf Prozesse der Lebensmittelverfahrenstechnik.3. Molekulares Verständnis der Fliesseigenschaften von Lebensmittelsystemen mit nicht-Newtonschem Fliessverhalten. | |||||
Inhalt | 1. Einführung 2. Grundlagen der Fluiddynamik 3. Grundlagen derThermodynamik 4. Grundlagen der Mechanik 5. Austausch und Transportvorgänge 6. Grundlagen der Ingenieurtechnischen Apparateauslegung 7. Grundlagen der Rheologie 8. Grundlagen der Schüttgutmechanik | |||||
Skript | Vorlesungsskriptum (ca. 100 Seiten, 60 Abbildungen) wird vor der ersten Vorlesung und Folien jeweils vor der Vorlesung bereit gestellt. | |||||
Literatur | - P. Grassmann: Einführung in die thermische Verfahrenstechnik, deGruyter Berlin, 1997 - H.D. Baehr: Thermodynamik, Springer Verlag, Berlin, 1984 | |||||
Voraussetzungen / Besonderes | Die Vorlesung erfordert während des Semesters wöchentliche Vor-/Nachbereitung. Im Unterricht wird aktive Mitarbeit erwartet. |
Seite 2 von 2
Alle