Suchergebnis: Katalogdaten im Herbstsemester 2017
Bauingenieurwissenschaften Master ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
101-0479-00L | Sicherheit und Zuverlässigkeit im Eisenbahnbetrieb Findet dieses Semester nicht statt. | W | 3 KP | 3G | U. A. Weidmann | |
Kurzbeschreibung | Sicherheitsstrategien und Sicherheitskonzepte spurgeführter Systeme, Eisenbahnsicherungstechnik, European Train Control System, Systeme der Betriebslenkung und Optimierung, Reliability Availability Maintainability Safety (RAMS) bei Eisenbahnen. | |||||
Lernziel | Die Studierenden verstehen die Grundprinzipien von Sicherheit, Zuverlässigkeit und Optimierung im Eisenbahnbetrieb und die Grundkonzepte der Eisenbahn Leit- und Sicherungstechnik. | |||||
Inhalt | Sicherheitsstrategien spurgeführter Systeme o Sicherheit im öffentlichen Verkehr o Sicherheitsrelevante Besonderheiten spurgeführter Systeme o Anforderungen an die Sicherheit spurgeführter Systeme o Sicherheitskonzepte Eisenbahnsicherungstechnik o Schutzfunktionen o Sicherung der Zugfolge o Sicherung der Fahrwegelemente o Sicherung von niveaugleichen Kreuzungen o Technische Realisierungen der Schutzfunktionen o European Train Control System Systeme der Betriebslenkung o Disposition o Betriebssteuerung o Konzepte der Betriebsoptimierung RAMS bei Eisenbahnen o Unfallursachenanalysen o Normen im Bereich RAMS für Bahnen o Risikoanalyse und Gefährdungsbeherrschung o Analysemethoden im Bereich RAMS o Konstruktionsprinzipien für Verfügbarkeit und Sicherheit o Instandhaltungsstrategien o Life Cycle Costs (LCC) o Human Factor o Sicherheit in langen Eisenbahntunnels Übungen im Eisenbahnlabor Exkursion zu Siemens Wallisellen (Leit und Sicherungstechnik) | |||||
Skript | Die Vorlesungspräsentationen werden abgegeben. | |||||
Literatur | Weiterführende Literaturhinweise finden sich in den Vorlesungsunterlagen. Eine zusätzliche Literaturliste wird abgegeben. | |||||
Voraussetzungen / Besonderes | Ein Teil der Übungen wird im Eisenbahn-Betriebslabor des IVT durchgeführt. Der vorgängige Besuch der Vorlesung Systemdimensionierung und Kapazität wird empfohlen. | |||||
101-0509-00L | Infrastructure Management 1: Process Remark: Former Title "Infrastructure Management Systems". | W | 4 KP | 3G | B. T. Adey | |
Kurzbeschreibung | The course provides an introduction to the steps included in the infrastructure management process. The lectures are given by a mixture of external people in German and internal people in English. | |||||
Lernziel | Upon completion of the course, students will - understand the steps required to manage infrastructure effectively, - understand the complexity of these steps, and - have an overview of the tools that they can use in each of the steps. | |||||
Inhalt | - The infrastructure management process and guidelines - Knowing the infrastructure - Dealing with data - Establishing goals and constraints - Establishing organization structure and processes - Making predictions - Selecting strategies - Developing programs - Planning interventions - Conducting impact analysis - Reviewing the process | |||||
Skript | Appropriate reading / and study material will be handed out during the course. Transparencies will be handed out at the beginning of each class. | |||||
Literatur | Appropriate literature will be handed out when required. | |||||
103-0417-02L | Theorien und Methoden der Planung Nur für Master-Studierende, ansonsten ist eine Spezialbewilligung des Dozierenden notwendig. | W | 3 KP | 2G | M. Nollert | |
Kurzbeschreibung | Für das Lösen raumplanerischer Probleme sind Optionen zu erkunden und zu beurteilen; dann ist zu begründen, weshalb eine Option anderen vorzuziehen sei. Die Basis für die Auswahl zu behandelnder Probleme bilden regelmässige Lagebeurteilungen. Dafür ist bestimmtes Wissen erforderlich, das adäquat sprachlich auszudrücken ist. | |||||
Lernziel | Die Absolventen kennen die Zusammenhänge zwischen Lagebeurteilung, Entscheiden, Wissen und Sprache. Sie wissen, was ein Entscheidungsdilemma ist und kennen Maximen, wie damit umzugehen ist. Insbesondere lernen sie, dass der Informationsbedarf, um eine Entscheidung zu fällen, vom Problem und den Präferenzen des entscheidenden Akteurs abhängt. Sie sind auch vertraut mit einigen Schwierigkeiten, die sich in diesem Zusammenhang üblicherweise einstellen und was sich dagegen tun lässt. | |||||
Inhalt | Die Vorlesung beschäftigt sich mit der Diskussion von Theorien und Methoden über die/der Planung und deren Evolution und vermittelt vertiefte Kenntnisse für die Behandlung typischer methodischer Herausforderungen der Planung in komplexen Systemen Die Schwerpunkte sind Lagebeurteilung, Entscheiden, Sprache und Wissen. | |||||
Skript | Lernmaterialien werden vor der Vorlesung online auf Moodle gestellt. | |||||
101-0491-00L | Agent Based Modeling in Transportation | W | 3 KP | 2G | M. Balac, T. J. P. Dubernet | |
Kurzbeschreibung | The main topics of the lecture are: 1) Introduction to the agent-based paradigm and overview on existing agent-based models in transportation, including MATSim 2) Learn how to setup MATSim for policy analysis 3) Learn how to extend the software (includes Java programming) 4) Create, run and analyse a policy study | |||||
Lernziel | The objective of this course is to make the students familiar with agent-based models and in particular with the software MATSim. They will learn the pros and cons of this type of approach versus traditional transport models and will learn to use the simulation. They will design a policy study and run simulations to evaluate the impacts of the proposed policies. | |||||
Inhalt | The main topics are: 1) Introduction to the agent-based paradigm and overview on existing agent-based models in transportation, including MATSim 2) Introduction of basic modeling concepts (activity-based approach, user equilibrium...) 3) Learn how to setup MATSim for policy analysis 4) Learn how to extend the software (includes Java programming) 5) Create, run and analyse a policy study | |||||
Literatur | Agent-based modeling in general Helbing, D (2012) Social Self-Organization, Understanding Complex Systems, Springer, Berlin. Heppenstall, A., A. T. Crooks, L. M. See and M. Batty (2012) Agent-Based Models of Geographical Systems, Springer, Dordrecht. MATSim Horni, A., K. Nagel and K.W. Axhausen (eds.) (2016) The Multi-Agent Transport Simulation MATSim, Ubiquity, London (http://www.matsim.org/the-book) Additional relevant readings, mostly scientific articles, will be recommended throughout the course. | |||||
Voraussetzungen / Besonderes | There are no strict preconditions in terms of which lectures the students should have previously attended. However, it is expected that the students have some experience with some high level programming language (i.e. C, C++, Fortran or Java). If this is not the case, attending the additional java exercises (101-0491-00U) is strongly encouraged. | |||||
101-0492-00L | Microscopic Modelling and Simulation of Traffic Operations Former title until HS16: Simulation of Traffic Operations. | W | 3 KP | 2G | K. Yang | |
Kurzbeschreibung | The course introduces basics of microscopic modelling and simulation of traffic operation, including model development, calibration, validation, data analysis, identification of strategies for improving traffic performance, and evaluation of such strategies. The modelling software used is VISSIM. | |||||
Lernziel | The objective of this course is to introduce basic concepts in microscopic traffic modelling and simulation, and conduct a realistic traffic engineering project from beginning to end. The students will first familiarize themselves with microscopic traffic models. They will then use a simulation for modeling and analyzing the traffic operations. The emphasis is not only on building the simulation model, but also understanding of the traffic models behind and logically evaluating results. The final goal is to make valid and concrete engineering proposals based on the simulation model. | |||||
Inhalt | In this course the students will first learn some microscopic modelling and simulation concepts, and then complete a traffic engineering project with microscopic traffic simulator VISSIM. Microscopic modelling and simulation concepts will include: 1) Car following models 2) Lane change models 3) Calibration and validation methodology Specific tasks for the project will include: 1) Building a model with the simulator VISSIM in order to replicate and analyze the traffic conditions measured/observed. 2) Calibrating and validating the simulation model. 3) Redesigning/extending the model to improve the traffic performance. | |||||
Skript | The lecture notes and additional handouts will be provided before the lectures. | |||||
Literatur | Additional literature recommendations will be provided at the lectures. | |||||
Voraussetzungen / Besonderes | Students need to know some basic road transport concepts. The course Road Transport Systems (Verkehr III), or simultaneously taking the course Traffic Engineering is encouraged. The course Transport Simulation (101-0438-00 G) and previous experience with VISSIM is helpful but not mandatory. | |||||
101-0449-00L | Systemführung, Marketing, Qualität Findet dieses Semester nicht statt. | W | 6 KP | 4G | U. A. Weidmann | |
Kurzbeschreibung | Verkehrs- und Ordnungspolitik, internationale und nationale Regulierung, Unternehmensführung öffentlicher Verkehrsunternehmungen, Marketing, Werbung und Prizing; Qualitätsmanagement | |||||
Lernziel | Verständnis der Verkehrs- und Ordnungspolitik sowie der Regulation der Unternehmenstätigkeit. Erkennen und Beherrschen der drei wichtigen Geschäftsprozesse im Betrieb öffentlicher Verkehrssysteme: (1) Führung der Unternehmung, (2) Marketing, (3) Qualitätssicherung. Erlernen wesentlicher Arbeitsmethoden bei der Führung dieser Prozesse. | |||||
Inhalt | (1) Verkehrs- und Ordnungspolitik: Verkehrsrelevante Ziele des Staates, staatliches Engagement im öffentlichen Verkehr, Regulierung. (2) Unternehmensführung im öffentlichen Verkehr: Zielsetzungen von Unternehmungen, Aufgaben der Unternehmensführung; Normative Unternehmensführung; Strategische Unternehmensführung; Operative Unternehmensführung. (3) Marketing, Werbung und Prizing: Grundlagen und Ziele; Marketingstrategien und -konzepte im öffentlichen Verkehr; Marketinginstrumente; Umsetzung von Marketingstrategien. (4) Qualitätssicherung: Qualität im Verkehr; Ziele des Qualitätsmanagements; Qualitätsmanagementsysteme; Strukturierung der Qualitätsmerkmale; Qualitätsmessung und -beurteilung; Nutzung zur Systemoptimierung. | |||||
Skript | Ein Skript in deutscher Sprache wird abgegeben. Die Vorlesungspräsentationen werden abgegeben. | |||||
Literatur | Weiterführende Literaturhinweise finden sich im Skript. Eine zusätzliche Literaturliste wird abgegeben. | |||||
Voraussetzungen / Besonderes | Vorgängiger Besuch der Vorlesungen System- und Netzplanung sowie Systemdimensionierung und Kapazität empfohlen. | |||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
101-0249-00L | Ausgewählte Kapitel aus dem Wasserbau Voraussetzung: 101-0247-01L Wasserbau II oder gleichwertige Lehrveranstaltung. | W | 3 KP | 2S | R. Boes, I. Albayrak | |
Kurzbeschreibung | Die Vorlesung vertieft ausgewählte wasserbauliche, wasserwirtschaftliche und gewässerökologische Themen im Zusammenhang mit Projekten im Schutz- und Nutzwasserbau. | |||||
Lernziel | Vertiefung von Spezialgebieten im Wasserbau und Kennenlernen der Vorgehensweise und des Ablaufs von Wasserkraftprojekten | |||||
Inhalt | Es werden verschiedene ausgewählte Themen des Wasserbaus vertieft. Zu diesen gehören z.B. die Aspekte der Talsperrensicherheit, mögliche Probleme in Stauräumen von Speichern wie Verlandung oder Naturgefahren durch Impulswellen, die Fliessgewässerhydraulik und die Hydraulik von Entlastungs- und Entnahmeanlagen an Talsperren und Wehren, das Spannungsfeld zwischen Ökologie und Wasserkraft, ökohydraulische Aspekte wie die Interaktion von Vegetation und Strömung sowie fischökologische Aspekte an Niederdruckanlagen. Ein weiterer Schwerpunkt liegt in der typischen Vorgehensweise und im Ablauf von Wasserkraftprojekten im In- und Ausland. | |||||
Skript | Vorlesungsunterlagen werden zum Download bereitgestellt. | |||||
Literatur | wird in der Vorlesung angegeben. | |||||
Voraussetzungen / Besonderes | Einbezug von externen Referenten zu aktuellen Fachthemen und Projekten im In- und Ausland. | |||||
101-0289-00L | Angewandte Glaziologie ![]() | W | 3 KP | 2G | M. Funk, A. Bauder, D. Farinotti | |
Kurzbeschreibung | Es werden physikalische Grundlagen vermittelt, die zum Verstaendnis praktischer Anwendungen noetig sind. Themen sind: Gletscher-Klima-Beziehung, Gletscherfliessen, Seeeis und Gletscherhydrologie. | |||||
Lernziel | Verstehen der Grundbegriffe sowie der wichtigsten physikalischen Prozesse in der Glaziologie. Kennenlernen der Modellieransätze zur Beschreibung der Dynamik von Gletschern. Erkennen der Gefahren die von Gletschern ausgehen können. | |||||
Inhalt | Grundbegriffe der Glaziologie Dynamik von Gletschern: Deformation von Gletschereis, Einfluss des Wassers auf die Gletscherbewegung, Reaktion von Gletschern auf Klimaschwankungen, aussergewöhnliche Gletschervorstösse (surge) Gletscherabbrüche Gletscherhochwasser Seeeis | |||||
Skript | Unterlagen werden während der Vorlesung abgegeben. | |||||
Literatur | Relevante Literatur wird während der Vorlesung angegeben. | |||||
Voraussetzungen / Besonderes | Für aktuelle Fallbeispiele werden risikobasierte Massnahmen bei glaziologischen Naturgefahren diskutiert. Voraussetzungen: Es werden Grundkenntnisse in Mechanik und Physik vorausgesetzt. | |||||
101-1249-00L | Hydraulics of Engineering Structures | W | 3 KP | 2G | H. Fuchs, I. Albayrak, L. Schmocker | |
Kurzbeschreibung | Hydraulic fundamentals are applied to hydraulic structures for wastewater, flood protection and hydropower. Typical case studies from engineering practice are further described. | |||||
Lernziel | Understanding and quantification of fundamental hydraulic processes with particular focus on hydraulic structures for wastewater, flood protection and hydropower | |||||
Inhalt | 1. Introduction & Basic equations 2. Losses in flow & Maximum discharge 3. Uniform flow & Critical flow 4. Hydraulic jump and stilling basin 5. Backwater curves 6. Weirs/End overfalls & Venturi 7. Sideweir & Sidechannel 8. Bottom opening & Culverts, throttling pipes, inverted siphons 9. Fall manholes & Vortex drop 10. Supercritical flow & Special manholes 11. Air/water flows and bottom outlets 12. Vegetated flows - Introduction 13. Vegetated flows - Application 14. Summary & Preparation for examination | |||||
Skript | Text books Hager, W.H. (2010). Wastewater hydraulics. Springer: New York. | |||||
Literatur | Exhaustive references are contained in the suggested text book. | |||||
102-0215-00L | Siedlungswasserwirtschaft II ![]() | W | 4 KP | 2G | M. Maurer, P. Staufer | |
Kurzbeschreibung | Technische Netzwerke in der Siedlungswasserwirtschaft. Wasserverteilung: Optimierung, Druckstoss, Korrosion und Hygiene. Siedlungsentwässerung: Siedlungshydrologie, instationäre Strömung, Schmutzstofftransport, Versickerung von Regenwasser, Gewässerschutz bei Regen. Generelle Entwässerungsplanung (GEP). | |||||
Lernziel | Vertiefung der Grundlagen für die Gestaltung und den Betrieb der technischen Netzwerke der Siedlungswasserwirtschaft. | |||||
Inhalt | Demand Side Management versus Supply Side Management Optimierung von Wasserverteilnetzen Druckstösse Kalkausfällung, Korrosion von Leitungen Hygiene in Verteilsystemen Siedlungshydrologie: Niederschlag, Abflussbildung Instationäre Strömungen in Kanalisationen Stofftransport in der Kanalisation Einleitbedingungen bei Regenwetter Versickerung von Regenwasser Generelle Entwässerungsplanung (GEP) | |||||
Skript | Es werden schriftliche Unterlagen abgegeben. Die Folien werden als Kopien zur Verfügung gestellt. | |||||
Voraussetzungen / Besonderes | Voraussetzung: Siedlungswasserwirtschaft GZ | |||||
101-1250-00L | Wildbach- und Hangverbau Hinweis: Bis FS16 701-1806-00 Wildbach- und Hangverbau. Keine erneute Belegung für Studierende erlaubt, welche diese schon belegt hatten. | W | 3 KP | 2V | D. Rickenmann | |
Kurzbeschreibung | Hydromechanische, geotechnische und dynamische Prozesse in Wildbachgerinnen und Hängen. Interaktionen zwischen Wildbächen und Seitenhängen. Technische und ingenieurbiologische Stabilisierungsmassnahmen. Gefahrenbeurteilung und Gesamtzusammenhänge in Einzugsgebieten. Bemessung von Schutzsystemen. Grenzen technischer Massnahmen. Ueberwachung und Unterhalt von Schutzmassnahmen. | |||||
Lernziel | Ziel Erkennen und Verstehen von Gerinne- und Hangprozessen und deren gegenseitigen Beeinflussung. Methoden der Gefahrenbeurteilung zum Schutz vor Naturgefahren sowie technische- und biologische Schutzmassnahmen kennen lernen und bewerten. Gefährdungsbilder und Einwirkungen auf Systeme darstellen. Bemessung und Konstruktion von Schutzsystemen. Beurteilen der räumlichen und zeitlichen Entwicklung mit und ohne Schutzmassnahmen. | |||||
Inhalt | Inhalt Hydromechanische, geotechnische und dynamische Prozesse in Wildbachgerinnen und Hängen. Interaktionen zwischen Wildbächen und Seitenhängen. Technische und ingenieurbiologische Stabilisierungsmassnahmen. Einwirkungen auf Schutzsysteme. Gefahrenbeurteilung und Gesamtzusammenhänge in Einzugsgebieten. Bemessung von Schutzsystemen. Grenzen technischer Massnahmen. Ueberwachung und Unterhalt technischer und ingenieurbiologischer Systeme. | |||||
Skript | siehe "Literatur" | |||||
Literatur | Literatur - Böll, A. (1997): Wildbach- und Hangverbau, Berichte der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft, Nr. 343,123p. - Rickenmann, D. (2014): Methoden zur quantitativen Beurteilung von Gerinneprozessen in Wildbächen. WSL Berichte, Nr. 9, 105p. (www.wsl.ch/publikationen/pdf/13549.pdf) - Rickenmann, D. (2016): Methods for the quantitative assessment of channel processes in torrents (steep streams). IAHR monograph, CRC Press, ISBN: 978-1-4987-7662-2. (NEBIS: Online-Ressource) | |||||
Voraussetzungen / Besonderes | Besonderes Voraussetzungen: - Grundzüge der Baustatik - Hydraulik - Geologie und Petrographie - Bodenphysik - Bodenmechanik und Geotechnik | |||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
101-0619-00L | Mechanics of Building Materials ![]() Findet dieses Semester nicht statt. | W | 3 KP | 2G | ||
Kurzbeschreibung | Material models comprise our knowledge on the physical behavior of materials. Based on a short introduction to solid mechanics, 3D material laws for elastic, visco-elastic behavior, plasticity and damage mechanics are discussed. We focus on material laws for concrete, metals, wood and other composites, how to obtain parameters from mechanical tests and their application in FEM calculations. | |||||
Lernziel | This introductory course aims to bridge the gap between phenomenological, qualitative comprehension of processes in building materials, their characterization in mechanical testing and the ability to apply those for practical design purposes via constitutive models. Upon completion of the course you should be able to: - classify different material behavior (e.g. linear/non-linear elastic, elasto-plastic, creep) with respect to types of constitutive material models (total /incremental strain models, damage / plasticity models, linear visco-elasticity), - review how incremental strain models (e.g. elasto-plastic) are algorithmically implemented in Finite Element software (UMat of Abaqus), - formulate the main approach and assumptions to the most import models for building materials and discuss their limitations, - propose experimental campaigns for obtaining relevant material parameters for non-linear material models. | |||||
Inhalt | - Introduction to constitutive models for materials - Fundaments of mechanics of materials - Cauchy-, hyper- and hypoelastic material descriptions - Constitutive Models for Concrete (non-linear elastic) - Introduction to metall and concrete plasticity - Introduction to ABAQUS UMAT Programming - Damage continuum mechanics - Linear visco-elastic materials | |||||
Skript | Will be provided during the lecture. | |||||
101-0639-01L | Science and Engineering of Glass and Natural Stone in Construction ![]() | W | 3 KP | 2G | F. Wittel, T. Wangler | |
Kurzbeschreibung | The course offers an overview of relevant practical issues and present technological challenges for glass and natural stones in constructions. Students gain a good knowledge of the basics of glasses and natural stones, their potential as engineering materials and learn to apply them in the design of civil engineering constructions and to evaluate concepts. | |||||
Lernziel | Glass is increasingly used in constructions to ease the construction process, as functional insulation barrier, even for structural applications of impressive size. While everyone has experienced the innovation potential of glass in the last decade, products from natural stone suffer from an unjustified traditional image that often originates from a lack of understanding of the material and its combination with other materials. Culturally important structures often are made from natural stone and their conservation demands an understanding of their deterioration mechanisms, the concepts of which can be applied to other civil engineering materials. Designers and engineers need the knowledge to reconcile materials and system behavior with the entire processing, handling, integration and life time in mind. In this module students are provided with a broad fundamental as well as practice-oriented education on glass and natural stone in civil engineering applications. Present and future construction and building concepts demand for such materials with optimized properties. Based on the fundamentals from the Bachelor course in materials by the end of this module, you should be able to: -recognize and choose specific applications from the broad overview you were provided with, -relate processing technologies to typical products and building applications and recognize (and explain typical damage related to wrong material choice or application, -explain the nature of glassy and crystalline materials and interpret their physical behavior against this background, -explain the major deterioration mechanisms in natural stone and how this relates to durability, -analyze material combinations and appraise their application in future products as well as integration in existing constructions, -summarize with appropriate guidance publications on a related topic in an oral presentation and short report. | |||||
Inhalt | Lecture 1: An introduction to science and engineering of glass and natural stone in construction (FW/TW) Lecture 2: Glass chemistry including historical development of glass composition, use of raw materials, melts, chemical stability and corrosion. (FW) Lecture 3: Geology and mineralogy of stones used in construction. Formation processes, chemistry, crystal structure. (TW) Lecture 4: Microscopic models for glassy materials. Physics of vitrification. From microscopic physical models to thermodynamics, rheology and mechanics of glassy materials. (FW) Lecture 5: Stone properties and behavior: microstructure, density, porosity, mechanical properties (TW) Lecture 6: Glass physics: Optical properties (transmission, reflection, emission, refraction, polarization and birefringence, testing methods); Mechanical properties (density, thermal, mechanical, electric properties, glass testing) (FW) Lecture 7: Stone properties and durability: transport, moisture and thermal cycling (TW) Lecture 8: Forming and processing of glass: (plate and molded glass, drawing, slumping, profiling etc.; Processing: Cutting, mechanical processing, tempering, gluing, bending, laminating of glass Surface treatments: coating, sputtering, enameling, printing, etching, chemical pre-stressing.) (FW) Lecture 9: Durability: Salt crystallization, freezing, biodeterioration (TW) Lecture 10: Glass products for civil engineering applications: (Molded glasses, fiber glass, foam glass, plate glass); construction glass (insulation glass, structural glass, protective glass, intelligent glass, codes); (FW) Lecture 11: Conservation: Consolidation, cleaning, and other treatments (TW). Lecture 12: Glass in constructions. (modelling, application and regulation, typical damage in glass) (FW) Lecture 13: Student presentations; exam questions (FW/TW) | |||||
Skript | Will be handed out in the lectures | |||||
Literatur | Werkstoffe II script (download via the IFB homepage). Rest will be handed out in the lectures | |||||
Voraussetzungen / Besonderes | Werkstoffe I/II of the bachelor studies or equivalent introductory materials lecture. | |||||
101-0659-01L | Durability and Maintenance of Reinforced Concrete | W | 3 KP | 2V | U. Angst, B. Elsener | |
Kurzbeschreibung | Der Kurs konzentriert sich auf die Haltbarkeit von Stahlbeton, insbesondere die Korrosion von Stahl in Beton. Der Schwerpunkt liegt auf dem Verständnis der Mechanismen, Planung und Ausführung Aspekte der Dauerhaftigkeit von neuen und bestehenden Strukturen. Neue Methoden und Materialien für präventive Maßnahmen, Zustandsbewertung und Reparaturverfahren. | |||||
Lernziel | Verständnis für den Mechanismus der Verschlechterung der Stahlbeton-Strukturen, insbesondere Bewehrungskorrosion. Kennen der relevanten Parameter für die Haltbarkeit von Beton, insbesondere Überdeckung, Betonqualität, Feuchtigkeit sowie der Verfahren, um die Haltbarkeit zu kontrollieren Verstehen der aktuellen Ansätze zum Design für eine lange Lebensdauer (Forderungsklassen, präskriptiven) und ihrer Grenzen Kennen zukünftiger performance-basierte Modelle für Haltbarkeit Gestaltung sowie der Schwierigkeiten bei der Definition der Input-Parameter (z. B. kritische Chloridgehalt). Kennen und verstehen verschiedene Möglichkeiten, um die Haltbarkeit des Stahlbetons zu verbessern (z. B. Edelstahl-Einlage) Kennen der besonderen Probleme mit vorgespannten Strukturen und Wege, um diese zu überwinden (galvanisch getrennt Sehnen). Kennen und verstehen der zerstörungsfreien Methoden zur Inspektion und Zustandsbewertung (insbes. half-cell potential mapping) und und deren Grenzen. Kennen und verstehen der Reparatur-Methoden, wie herkömmliche Reparatur, elektrochemische Methoden (insbesondere kathodischer Schutz) Sich der Unterschieden in der Leistung der neuen Mischzementen (insbesondere CEM II mit Kalkstein) Respekt für die traditionelle Portlandzement und die mögliche zukünftige Probleme für eine lange Lebensdauer bewusst werden. | |||||
Inhalt | Stahlbeton vereint die gute Druckfestigkeit von Beton mit der hohen Zugfestigkeit von Stahl und hat sich als in Bezug auf die strukturelle Leistungsfähigkeit und Haltbarkeit bewährt. Jedoch gibt es Fälle eines vorzeitigen Ausfalls von Stahlbeton- und Spannbeton-Komponenten durch Korrosion des Bewehrungsstahls mit sehr hohen wirtschaftlichem Schaden. Dieser Kurs konzentriert sich auf die Chlorid-und Kohlensäure induzierte Korrosion von Stahl in Beton, präsentiert Transportmechanismen und elektrochemische Konzepte. Der Schwerpunkt liegt auf Planung und Ausführung Aspekte der Dauerhaftigkeit von neuen und bestehenden Strukturen. Neue Methoden und Materialien für präventive Maßnahmen, Zustandsbewertung und Reparaturverfahren werden diskutiert. Der Kurs ist ein Bezugspunkt für Ingenieure und Materialwissenschaftler in Forschung und Praxis des Korrosionsschutzes, Rehabilitation und Pflege von Stahlbeton-Strukturen und Komponenten beteiligt. Vorlesung 1 Administrative Fragen, Literatur, was Studierende erwarten zu lernen? Einführung (wirtschaftliche Relevanz der Haltbarkeit, Übergang vom Bau bis zur Wartung). Grundlagen der Korrosion und Dauerhaftigkeit / Passivität und Lochfraß Vorlesung 2 Stahlbeton / Korrosionsschutz / Abbau-Mechanismus Korrosion (Chloride / Kohlensäure) / elektrochemischen Mechanismus / Controlling Parameter / Risse und Abplatzungen an der Oberfläche, Gefahr von örtlicher Korrosion Vorlesung 3 Andere Degradationsmechanismen: Sulfatangriff, ASR, Frostangriff Verschiedene Beispiele, Häufigkeit des Auftretens der einzelnen Schädigungsmechanismen Vorlesung 4 Lebensdauer: Einleitung des Verfahrens und Ausbreitung der Bühne. Haltbarkeit Design: präskriptiven Ansatz, konstruktive Detaillierung, die Bedeutung von Feuchtigkeit für fast alle Degradationsmechanismen. Leistungsorientiertes Konzept, einfacher Diffusions Ansatz für Chlorideintrag, Critical Chloridgehalt (Einflussgrößen) Vorlesung 5 Edelstahl als Bewehrungsstahl für Beton / verschiedene Typen von nichtrostenden Stählen / mechanische Eigenschaften / Korrosionsbeständigkeit, Passivität / Kupplung mit schwarzem Betonstahl / Anwendungsbeispiele / Life-Cycle-Kosten Vorlesung 6 Inspektion und Zustandsbewertung I: Sichtprüfung / Zerstörungsfreie Prüfung (Chlorid-Profile, Karbonatisierungstiefe, Dünn-Schnitt-Analyse, etc.) Vorträge 7 Inspektion und Zustandsbewertung II: zerstörungsfreie Prüfung (potentiellen Mapping, Überdeckung Messung Widerstandsmessung). Potential-Mapping: Messprinzip / Wirkung von kohlensäurehaltigen Abdeckung zone / Einwirkung von Feuchtigkeit / Beispiele Vorlesung 8 Vorgespannten Strukturen / Problem mit bestehenden Strukturen: keine NDT-Methode / Ansatz für den Schutz (multiple Barriere) / neue Systeme mit Polymer Kanäle / elektrisch isolierten Sehnen / fib Richtlinien / Swiss Leitlinie / Monitoring-Techniken / Anwendungen Vorlesung 9 Reparatur-Methoden I: konventionelle Reparatur / Beschichtungen / Inhibitoren / Einschränkungen Vorlesung 10 Reparatur-Methoden II: elektrochemische Reparatur-Methoden (ECR, ER, CP) / principles / elektrochemische Chlorid-Abscheidung (Theorie und Bsp.) / elektrochemische realkalization (Theorie und Bsp.) / wann können diese Methoden angewandt werden? / Kostenaspekte Vorlesung 11 Repair Methoden III: kathodischen Schutz (Theorie, technische Lösungen, Anode, etc und Beispiele). Überwachung der CP. Vorlesung 12 Neue Zemente, Thema CO2-Reduktion. Auswirkungen von Flugasche, Schlacke, Kalk auf die Verarbeitbarkeit, Diffusionskoeffizient, Widerstand, pH (einschließlich einer Diskussion der puzzolanischen Reaktion und Konsequenzen in Bezug auf pH-Wert puffernde Portlandit Reserve). Diskutieren der Produkte auf dem Schweizer Markt. Vorlesung 13 Zusammenfassung der wichtigsten Punkte dieses Kurses durch die Studierenden. Offene Diskussion über die Haltbarkeit Design, neuer Zemente, neue Materialien und Reparatur-Methoden | |||||
Skript | Die Vorlesung basiert auf dem Buch: Corrosion of steel in concrete - prevention diagnosis repair (WILEY 2013) by L. Bertolini, B. Elsener, P. Pedeferri and R. Polder) Folien der Vorträge werden im Voraus verteilt. Besondere Handouts und Nachdrucke für bestimmte Themen werden in der Vorlesung verteilt. | |||||
Literatur | A first overview can be found in: B. Elsener, Corrosion of Steel in Concrete, in "Corrosion and Environmental Degradation", ed. M. Schütze, WILEY VCH (2000) Vol.2 pp. 391 - 431 Backbone of the course: Corrosion of Steel in Concrete - Prevention diagnosis repair, L. Bertolini, B. Elsener, P. Pedeferri, R. Polder, WILEY VCH 2nd edition (2013) | |||||
Voraussetzungen / Besonderes | Die Studierenden werden ermutigt, sich aktiv an den Vorlesungen zu beteiligen. Die Studierenden haben allen Übungen (vier) zu bearbeiten. Für eine Übung ist eine detaillierte schriftliche Lösung der gestellten Aufgabe zu liefern (nach der Diskussion). Die Studierenden sollten die Prüfungen in Werkstoffe I und II bestanden haben. | |||||
101-0669-00L | Bituminöse Werkstoffe | W | 3 KP | 2G | M. Partl | |
Kurzbeschreibung | Vermittlung eines vertieften Einblickes in die Besonderheiten des mechanischen und chemisch-physikalischen Verhaltens sowie des Aufbaus und der Anwendung bitumenhaltiger Werkstoffe insbesondere mit Blick auf deren Verwendung im Strassenbau und für Abdichtungen. Dabei wird auch auf neue Forschungs- und Entwicklungstendenzen eingegangen. | |||||
Lernziel | Vermittlung eines vertieften Einblickes in die Besonderheiten des mechanischen und chemisch-physikalischen Verhaltens sowie des Aufbaus und der Anwendung bitumenhaltiger Werkstoffe insbesondere mit Blick auf deren Verwendung im Strassenbau und für Abdichtungen. Dabei wird auch auf neue Forschungs- und Entwicklungstendenzen eingegangen. | |||||
Inhalt | Grundlagen des mechanischen Verhaltens: Viskosität, Rheologische Modelle, viskoelastisches Stoffverhalten, Zeit-Temperatur Superpositionsprinzip; Ermüdung; Viskoplastizität Bituminöse Bindemittel: Teerproblematik,Bitumen, Naturasphalt, Polymerbitumen, technologische Prüfverfahren, mechanisch-physikalische Eigenschaften, Bindemittleklassierung, Bitumenemulsionen, Schaumbitumen Strassenbeläge aus Asphalt: Struktureller Aufbau und Konzepte, Herstellung, Mischgutprüfung und Charakterisierung, Mischgutgruppen, Recycling Abdichtungen mit Bitumendichtungsbahnen: Haftvermittler, Aufbau der Polymerbitumen-Dichtungsbahnen, Herstellung, charakteristische Prüfungen, systemrelevante Eigenschaften, Einbau und Ausführung | |||||
Skript | Skript, verteil während Vorlesung | |||||
Voraussetzungen / Besonderes | Die Vorlesung beinhaltet zwei fakultative schriftliche Übungen und eine Literaturübung mit Kurzvortrag, letztere ist obligatorisch durchzuführen. | |||||
101-0689-00L | Shrinkage and Cracking of Concrete: Mechanisms and Impact on Durability | W | 3 KP | 2V | P. Lura, M. Wyrzykowski | |
Kurzbeschreibung | Concrete is generally viewed as a durable construction material. However, the long-term performance of a concrete structure can be greatly compromised by early-age cracking. This course will explain how shrinkage of concrete leads to cracking and how control of shrinkage allows increasing the expected durability of a concrete structure. | |||||
Lernziel | This course will begin with a brief introduction about hydration and microstructure development in cement paste and concrete. The students will learn the main causes of cracking at early ages, namely plastic, drying, thermal and autogenous shrinkage, with special emphasis on the driving mechanisms. The importance of concrete curing, especially in the first few days after casting, will be stressed and explained. Building on the knowledge of the driving forces of shrinkage, the way of action of shrinkage-reducing admixtures will be clarified and different applications illustrated. As an extension of external curing, the students will become familiar with internal water curing by means of saturated lightweight aggregates and superabsorbent polymers. Most concrete members are restrained by adjacent structures. When shrinkage is restrained, cracks may develop. The students will learn how to apply different criteria for assessing concrete cracking and how to retrieve the mechanical properties of the concrete, especially stiffness and creep, relevant for the calculations. In addition to macroscopic cracks, microcracking may occur in the cement paste due to inner restraint offered by the aggregates. Both macroscopic cracks and diffuse microcracking within a concrete may facilitate the ingress of harmful substances (e.g. chloride and sulfate ions) into the concrete; these may react with the concrete or with the reinforcement and create further deterioration. The students will acquire an understanding of the mechanisms of transport through cracked concrete, with special focus on experimental evidence and on techniques able to visualize the transport process and follow it in time. As a final outcome of the course, the students will be able to estimate the impact of cracking on the expected durability of concrete structures and to implement different types of measures to reduce the extent of cracking. | |||||
Inhalt | Concrete is generally viewed as a long-lasting construction material. However, the durability of a concrete structure can be jeopardized by shrinkage-induced cracking. In addition to being unsightly, cracks have the potential to act as weak planes for further distress or as conduits for accelerated ingress of aggressive agents that may reduce durability. Advances in concrete technology over the past decades have led to the practical use of concrete with a low water to binder ratio and with different types of mineral and organic admixtures. Another recent development is self-compacting concrete, which avoids concrete vibration and reduces labor during placing. Unfortunately, these concretes are especially prone to cracking at an early age, unless special precautions are taken. Proper curing becomes in this case the key to achieve better performance in various environmental and load conditions. Specific topics covered by the course: - Hydration and microstructure development - Plastic shrinkage - Development of mechanical properties - Thermal deformation - Autogenous deformation - Drying shrinkage - Creep and relaxation - Curing - Shrinkage-reducing admixtures - Internal curing: saturated lightweight aggregates and superabsorbent polymers - Fracture and microcracking - Transport in cracked concrete - Impact of cracking on concrete durability - Self-healing of cracks | |||||
Skript | For each lecture, lecture notes will be provided. In addition, one or two research papers for each lecture will be indicated as supportive information. | |||||
Literatur | Copies of one to two research papers relevant to the topic of each lecture will be provided to the students as supportive information. | |||||
Voraussetzungen / Besonderes | A basic knowledge of concrete technology is preferable. | |||||
151-0353-00L | Mechanics of Composite Materials ![]() | W | 4 KP | 2V + 1U | G. Kress | |
Kurzbeschreibung | Behandelt wird Modellierung der Steifigkeit und Festigkeitvon faserverstärkten Kunststoffen und daraus hergestellten Laminaten sowie einfachen Bauteilen. Für Randeffekte und periodische Strukturen werden numerisch effiziente FEM-Ansätze für verallgemeinerten ebenen Dehnungszustand und Einheitszellenmodellierung erklärt. Die mechanische Interpretation von Experimenten wird auch behandelt. | |||||
Lernziel | Ziel ist die Vermittlung des Verständnisses des Verhaltens von Strukturen aus anisotropen und heterogenen Faserverbundwerkstoffen mit all den Besonderheiten, wie sie bei Metallen nicht vorkommen. Die Vorlesung soll Begeisterung für die vielfältigen und spannenden Probleme auf diesem Gebiet wecken und damit eine Grundlage für eine entsprechende Forschungstätigkeit schaffen. Andererseits wird mit dem vermittelten Wissen auch die Befähigung für kompetente Produktentwicklung in einem industriellen Umfeld gegeben. | |||||
Inhalt | 1. Introduction and elastic anisotropy 2. Laminate theory 3. Thick-walled laminates and interlaminar stresses 4. Edge effects at multidirectional laminates 5. Structural problems and simplified finite-element modelling 6. Micromechanics 7. Failure hypotheses and damage prediction 8. Damage progression analysis 9. Static-strength notch-size influence 10. Fatigue Response 11. Design and sizing, sandwich theory 12. Plain-weave non-linear mechanical model 13. Composite materials mechanical testing | |||||
Skript | Skript und alles weitere Material findet sich auf MOODLE: https://moodle-app2.let.ethz.ch/course/view.php?id=2610 | |||||
Literatur | Die Vorlesungsunterlagen sind vollständig. Weiterführende Literatur und verwendete Quellen sind im Skript aufgeführt. | |||||
Voraussetzungen / Besonderes | Keine | |||||
151-0833-00L | Principles of Nonlinear Finite-Element-Methods ![]() | W | 5 KP | 2V + 2U | N. Manopulo, B. Berisha | |
Kurzbeschreibung | Die meisten Problemstellungen im Ingenieurwesen sind nichtlinearer Natur. Die Nichtlinearitäten werden hauptsächlich durch nichtlineares Werkstoffverhalten, Kontaktbedingungen und Strukturinstabilitäten hervorgerufen. Im Rahmen dieser Vorlesung werden die theoretischen Grundlagen der nichtlinearen Finite-Element-Methoden zur Lösung von solchen Problemstellungen vermittelt. | |||||
Lernziel | Das Ziel der Vorlesung ist die Vermittlung von Grundkenntnissen der nichtlinearen Finite-Elemente-Methode (FEM). Der Fokus der Vorlesung liegt bei der Vermittlung der theoretischen Grundlagen der nichtlinearen FE-Methoden für implizite und explizite Formulierungen. Typische Anwendungen der nichtlinearen FE-Methode sind Simulationen von: - Crash - Kollaps von Strukturen - Materialien aus der Biomechanik (Softmaterials) - allgemeinen Umformprozessen Insbesondere wird die Modellierung des nichtlinearem Werkstoffverhalten, thermomechanischen Vorgängen und Prozessen mit grossen plastischen Deformationen behandelt. Im Rahmen von begleitenden Uebungen wird die Fähigkeit erworben, selber virtuelle Modelle zur Beschreibung von komplexen nichtlinearen Systemen aufzubauen. Wichtige Modelle wie z.B. Stoffgesetze werden in Matlab programmiert. | |||||
Inhalt | - Kontinuumsmechanische Grundlagen zur Beschreibung grosser plastischer Deformationen - Elasto-plastische Werkstoffmodelle - Aufdatiert-Lagrange- (UL), Euler- und Gemischt-Euler-Lagrange (ALE) Betrachtungsweisen - FEM-Implementation von Stoffgesetzen - Elementformulierungen - Implizite und explizite FEM-Methoden - FEM-Formulierung des gekoppelten thermo-mechanischen Problems - Modellierung des Werkzeugkontaktes und von Reibungseinflüssen - Gleichungslöser und Konvergenz - Modellierung von Rissausbreitungen - Vorstellung erweiterter FE-Verfahren | |||||
Skript | ja | |||||
Literatur | Bathe, K. J., Finite-Elemente-Methoden, Springer-Verlag, 2002 | |||||
Voraussetzungen / Besonderes | Bei einer grossen Anzahl von Studenten werden bei Bedarf zwei Übungstermine angeboten. | |||||
101-0637-10L | Holzstruktur und Funktion ![]() Maximale Teilnehmerzahl: 15 | W | 3 KP | 2G | I. Burgert, E. R. Zürcher | |
Kurzbeschreibung | Die Vorlesung Holzstruktur und Funktion vermittelt den Studierenden grundlegende Kenntnisse über den Aufbau von Nadel- und Laubhölzern sowie über allgemeine und holzartspezifische Zusammenhänge zwischen Wachstumsprozessen, Holzeigenschaften und den Funktionen des Holzes im Baum. | |||||
Lernziel | Lernziel ist ein grundlegendes Verständnis der Anatomie des Holzes sowie deren Beeinflussung durch endogene und exogene Einflussfaktoren. Dazu sollen die Studierenden in die Lage versetzt werden, prominente mitteleuropäische Holzarten auf der mikroskopischen und makroskopischen Ebene zu erkennen. Vertieft wird dies mit Bestimmungsübungen für die Nadelhölzer, welche mittels eines Bestimmungsschlüssels eindeutig zu bestimmen sind. Darüber hinaus sollen Kenntnisse über die Zusammenhänge zwischen Baumwachstum, Holzeigenschaften und den Funktionen des Holzes im Baum vermittelt werden. Dabei steht die Funktion des Holzes im Baum im Vordergrund, es sollen allerdings auch Querbezüge zur technologischen Bedeutung, welche in den Vorlesungen Holzphysik sowie Holzeigenschaften und Holzbearbeitung behandelt wird, aufgezeigt werden. | |||||
Inhalt | In einer allgemeinen Einführung in die Holzanatomie werden der generelle Aufbau von Nadel- und Laubholz behandelt. Dabei werden die Baumarten auch im Hinblick auf Diversität und grundlegende Variabilität sowie deren Einflussfaktoren betrachtet. Danach liegt der Schwerpunkt auf der Holzanatomie prominenter mitteleuropäischer Nadel- und Laubholzarten. Hierbei werden die Studierenden sowohl auf der mikroskopischen als auch auf der makroskopischen Ebene in der Holzartenerkennung geschult. Für die Nadelhölzer werden darüber hinaus vertiefende Bestimmungsübungen durchgeführt. In den weiteren Vorlesungen werden darauf aufbauend Zusammenhänge zwischen Holzstruktur, Eigenschaften und Funktion im Baum unter Berücksichtigung der Wachstumsdynamik dargestellt. Dabei werden insbesondere die Themenbereiche mechanische Stabilität und Wassertransport, Ästigkeit, Reaktionsholzbildung (Druckholz, Zugholz), Drehwuchs, Wachstumsspannungen und Verkernung sowie das adaptive Wachstum ausführlich behandelt. | |||||
101-0637-20L | Holzbearbeitung und -verarbeitung | W | 3 KP | 2G | I. Burgert, O. F. Kläusler | |
Kurzbeschreibung | Die Vorlesung Holzbearbeitung und -verarbeitung vermittelt den Studierenden grundlegende Kenntnisse über technologische Eigenschaften des Holzes und der Holzwerkstoffe sowie deren Bearbeitung und Verarbeitung zur Herstellung einer breiten Palette von industriellen Holzprodukten. | |||||
Lernziel | Lernziel ist ein grundlegendes Verständnis der dominierenden Holzbe- und -verarbeitungsprozesse, welche zur Herstellung von industriellen Holzprodukten zur Anwendung kommen. Hierzu wird einleitend die wirtschaftliche Bedeutung der Ressource Holz vorgestellt und erforderliche Kenntnisse über die technologischen Eigenschaften des Holzes vermittelt. Die Studierenden sollen mit Abschluss der Vorlesung in der Lage sein, schlüssige Zusammenhänge zwischen Holzarten und deren Eigenschaften sowie geeigneten Bearbeitungsprozessen und den daraus resultierenden Holzprodukten herzustellen. | |||||
Inhalt | Die allgemeine Einführung stellt die wirtschaftliche Bedeutung des Rohstoffs Holz im globalen, europäischen und schweizerischen Kontext vor und beleuchtet Aspekte der Nachhaltigkeit in der Holzproduktion und der Zertifizierung. Im Folgenden werden erforderliche Kenntnisse zu den allgemeinen und holzartspezifischen Zusammenhängen zwischen Struktur und Eigenschaften vermittelt. Danach werden verschiedene volkswirtschaftlich relevante Holzbe- und -verarbeitungsprozesse vorgestellt und detailliert hinsichtlich Holzartenwahl, Prozessparametern sowie Produkteigenschaften betrachtet. Der Hauptaugenmerk wird dabei im Bereich von Vollholzprodukten auf die Schnittholzherstellung und die Trocknung gelegt. Mit Blick auf die Furnierherstellung werden Kenntnisse über das Dämpfen, den Furnierschnitt und die Herstellung von Lagenholzwerkstoffen vermittelt. Desweitern wird die Technologie zur Herstellung von Span- und Faserwerkstoffen sowie die gängige Produktpalette vorgestellt und bearbeitet. Dieser Themenblock wird durch grundlegende Einblicke in die Papierherstellung abgerundet. Im Anschluss werden die Themenbereiche Verklebung und Holzschutz betrachtet und dabei Möglichkeiten und Grenzen des Einsatzes von Holz und Holzwerkstoffen erörtert. Zum Abschluss der Vorlesung wird durch eine Exkursion zu einem Schweizer Holzbearbeitungs-unternehmen der Praxisbezug vertieft. |
Seite 2 von 3
Alle