Suchergebnis: Katalogdaten im Frühjahrssemester 2021

MAS in Medical Physics Information
Fachrichtung: General Medical Physics
Vertiefung Radiation Therapy
Wahlfächer
NummerTitelTypECTSUmfangDozierende
227-0390-00LElements of MicroscopyW4 KP3GM. Stampanoni, G. Csúcs, A. Sologubenko
KurzbeschreibungThe lecture reviews the basics of microscopy by discussing wave propagation, diffraction phenomena and aberrations. It gives the basics of light microscopy, introducing fluorescence, wide-field, confocal and multiphoton imaging. It further covers 3D electron microscopy and 3D X-ray tomographic micro and nanoimaging.
LernzielSolid introduction to the basics of microscopy, either with visible light, electrons or X-rays.
InhaltIt would be impossible to imagine any scientific activities without the help of microscopy. Nowadays, scientists can count on very powerful instruments that allow investigating sample down to the atomic level.
The lecture includes a general introduction to the principles of microscopy, from wave physics to image formation. It provides the physical and engineering basics to understand visible light, electron and X-ray microscopy.
During selected exercises in the lab, several sophisticated instrument will be explained and their capabilities demonstrated.
LiteraturAvailable Online.
227-0946-00LMolecular Imaging - Basic Principles and Biomedical ApplicationsW3 KP2V + 1AD. Razansky
KurzbeschreibungConcept: What is molecular imaging.
Discussion/comparison of the various imaging modalities used in molecular imaging.
Design of target specific probes: specificity, delivery, amplification strategies.
Biomedical Applications.
LernzielMolecular Imaging is a rapidly emerging discipline that translates concepts developed in molecular biology and cellular imaging to in vivo imaging in animals and ultimatly in humans. Molecular imaging techniques allow the study of molecular events in the full biological context of an intact organism and will therefore become an indispensable tool for biomedical research.
InhaltConcept: What is molecular imaging.
Discussion/comparison of the various imaging modalities used in molecular imaging.
Design of target specific probes: specificity, delivery, amplification strategies.
Biomedical Applications.
227-0948-00LMagnetic Resonance Imaging in MedicineW4 KP3GS. Kozerke, M. Weiger Senften
KurzbeschreibungIntroduction to magnetic resonance imaging and spectroscopy, encoding and contrast mechanisms and their application in medicine.
LernzielUnderstand the basic principles of signal generation, image encoding and decoding, contrast manipulation and the application thereof to assess anatomical and functional information in-vivo.
InhaltIntroduction to magnetic resonance imaging including basic phenomena of nuclear magnetic resonance; 2- and 3-dimensional imaging procedures; fast and parallel imaging techniques; image reconstruction; pulse sequences and image contrast manipulation; equipment; advanced techniques for identifying activated brain areas; perfusion and flow; diffusion tensor imaging and fiber tracking; contrast agents; localized magnetic resonance spectroscopy and spectroscopic imaging; diagnostic applications and applications in research.
SkriptD. Meier, P. Boesiger, S. Kozerke
Magnetic Resonance Imaging and Spectroscopy
376-1984-00LLasers in Medicine
Findet dieses Semester nicht statt.
W3 KP3G
KurzbeschreibungFragen wie "Was ist ein Laser, wie funktioniert er und was macht ihn so interessant für die Medizin?", aber auch "Wie breitet sich Licht im Gewebe aus und welche Wechselwirkungen treten dabei auf?" sollen beantwortet werden. Speziell wird auf therapeutische, diagnostische und bildgebende Anwendungen anhand von ausgewählten Beispielen eingegangen.
LernzielSie wissen wie ein Laser funktioniert und wie er aufgebaut ist und verstehen die physikalischen Prinzipien eines Lasers. Sie kennen die Eigenschaften von Laserlicht und wie diese für medizinische Zwecke eingesetzt werden können. Sie können unterschiedlichen Laser-Gewebe-Wechselwirkungen erklären und wissen welche Parameter diese beeinflussen. Sie können erklären, was Auflösung, Kontrast und Vergrösserung bedeutet. Sie sind in der Lage eine Laserschutzbrille für Ihr Lasersystem zu bestellen. Sie sind in der Lage für eine gezielte klinische Anwendung die richtigen Laserparameter zu bestimmen.
InhaltDie Anwendung des Lasers in der Medizin gewinnt zunehmend dort an Bedeutung, wo seine speziellen Eigenschaften gezielt zur berührungslosen, selektiven und spezifischen Wirkung auf Weich- und Hartgewebe für minimal invasive Therapieformen oder zur Eröffnung neuer therapeutischer und diagnostischer Methoden eingesetzt werden können. Grundlegende Arbeiten zum Verständnis der Lichtausbreitung im Gewebe (Absorptions-, Reflexions- und Transmissionsvermögen) und die unterschiedlichen Formen der Wechselwirkung (photochemische, thermische, ablative und optomechanische Wirkung) werden eingehend behandelt. Speziell wird auf den Einfluss der Wellenlänge und der Bestrahlungszeit auf den Wechselwirkungsmechanismus eingegangen. Die unterschiedlichen medizinisch genutzten Lasertypen und Strahlführungssysteme werden hinsichtlich ihres Einsatzes im Bereich der Medizin anhand ausgesuchter Anwendungsbeispiele diskutiert. Neben den therapeutischen Wirkungen wird auf den Einsatz des Lasers in der medizinischen Diagnostik (z.B. Tumor-Fluoreszenzdiagnostik, Bildgebung) eingegangen. Die beim Einsatz des Lasers in der Medizin erforderlichen Schutzmassnahmen werden diskutiert.
Skriptwird im Internet bereitgestellt (ILIAS)
Literatur- M. Born, E. Wolf, "Principles of Optics", Pergamon Press
- B.E.A. Saleh, M.C. Teich, "Fundamentals of Photonics", John Wiley and Sons, Inc.
- A.E. Siegman, "Lasers", University Science Books
- O. Svelto, "Principles of Lasers", Plenum Press
- J. Eichler, T. Seiler, "Lasertechnik in der Medizin", Springer Verlag
- M.H. Niemz, "Laser-Tissue Interaction", Springer Verlag
- A.J. Welch, M.J.C. van Gemert, "Optical-thermal response of laser-irradiated
tissue", Plenum Press
402-0343-00LPhysics Against Cancer: The Physics of Imaging and Treating Cancer
Fachstudierende UZH müssen das Modul PHY361 direkt an der UZH buchen.
W6 KP2V + 1UA. J. Lomax, U. Schneider
KurzbeschreibungRadiotherapy is a rapidly developing and technology driven medical discipline that is heavily dependent on physics and engineering. In this lecture series, we will review and describe some of the current developments in radiotherapy, particularly from the physics and technological view point, and will indicate in which direction future research in radiotherapy will lie.
LernzielRadiotherapy is a rapidly developing and technology driven medical discipline that is heavily dependent on physics and engineering. In the last few years, a multitude of new techniques, equipment and technology have been introduced, all with the primary aim of more accurately targeting and treating cancerous tissues, leading to a precise, predictable and effective therapy technique. In this lecture series, we will review and describe some of the current developments in radiotherapy, particularly from the physics and technological view point, and will indicate in which direction future research in radiotherapy will lie. Our ultimate aim is to provide the student with a taste for the critical role that physics plays in this rapidly evolving discipline and to show that there is much interesting physics still to be done.
InhaltThe lecture series will begin with a short introduction to radiotherapy and an overview of the lecture series (lecture 1). Lecture 2 will cover the medical imaging as applied to radiotherapy, without which it would be impossible to identify or accurately calculate the deposition of radiation in the patient. This will be followed by a detailed description of the treatment planning process, whereby the distribution of deposited energy within the tumour and patient can be accurately calculated, and the optimal treatment defined (lecture 3). Lecture 4 will follow on with this theme, but concentrating on the more theoretical and mathematical techniques that can be used to evaluate different treatments, using mathematically based biological models for predicting the outcome of treatments. The role of physics modeling, in order to accurately calculate the dose deposited from radiation in the patient, will be examined in lecture 5, together with a review of mathematical tools that can be used to optimize patient treatments. Lecture 6 will investigate a rather different issue, that is the standardization of data sets for radiotherapy and the importance of medical data bases in modern therapy. In lecture 7 we will look in some detail at one of the most advanced radiotherapy delivery techniques, namely Intensity Modulated Radiotherapy (IMRT). In lecture 8, the two topics of imaging and therapy will be somewhat combined, when we will describe the role of imaging in the daily set-up and assessment of patients. Lecture 9 follows up on this theme, in which a major problem of radiotherapy, namely organ motion and changes in patient and tumour geometry during therapy, will be addressed, together with methods for dealing with such problems. Finally, in lectures 10-11, we will describe in some of the multitude of different delivery techniques that are now available, including particle based therapy, rotational (tomo) therapy approaches and robot assisted radiotherapy. In the final lecture, we will provide an overview of the likely avenues of research in the next 5-10 years in radiotherapy. The course will be rounded-off with an opportunity to visit a modern radiotherapy unit, in order to see some of the techniques and delivery methods described in the course in action.
Voraussetzungen / BesonderesAlthough this course is seen as being complimentary to the Medical Physics I and II course of Dr Manser, no previous knowledge of radiotherapy is necessarily expected or required for interested students who have not attended the other two courses.
465-0968-00LMedizinphysik in der Praxis
Findet dieses Semester nicht statt.
W2 KP2VReferent/innen
KurzbeschreibungZiel der Vorlesung ist es, die verschiedenen Aspekte der Medizinischen Physik aus der Sicht des Praktikers kennenzulernen. Ein wichtiger Bestandteil ist dabei, den Dialog zwischen den Studierenden und den Praktikern zu fördern und Kontakte zu schaffen. Hierzu berichten verschiedene Dozenten aus der ganzen Schweiz über ihre Arbeit als Medizinphysiker.
LernzielZiel der Vorlesung ist es, die verschiedenen Aspekte der Medizinischen Physik aus der Sicht des Praktikers kennenzulernen.
402-0787-00LTherapeutic Applications of Particle Physics: Principles and Practice of Particle TherapyW6 KP2V + 1UA. J. Lomax
KurzbeschreibungPhysics and medical physics aspects of particle physics
Subjects: Physics interactions and beam characteristics; medical accelerators; beam delivery; pencil beam scanning; dosimetry and QA; treatment planning; precision and uncertainties; in-vivo dose verification; proton therapy biology.
LernzielThe lecture series is focused on the physics and medical physics aspects of particle therapy. The radiotherapy of tumours using particles (particularly protons) is a rapidly expanding discipline, with many new proton and particle therapy facilities currently being planned and built throughout Europe. In this lecture series, we study in detail the physics background to particle therapy, starting from the fundamental physics interactions of particles with tissue, through to treatment delivery, treatment planning and in-vivo dose verification. The course is aimed at students with a good physics background and an interest in the application of physics to medicine.
Voraussetzungen / BesonderesThe former title of this course was "Medical Imaging and Therapeutic Applications of Particle Physics".
  •  Seite  1  von  1