Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Rechnergestützte Wissenschaften Master Information
Vertiefungsgebiete
Physik
Für das Vertiefungsgebiet "Physik" sind Grundkenntnisse in Quantenmechnik erforderlich.
NummerTitelTypECTSUmfangDozierende
402-0812-00LComputational Statistical Physics Information W8 KP2V + 2UM. Krstic Marinkovic
KurzbeschreibungSimulationsmethoden in der statistischen Physik. Klassische Monte-Carlo-Simulationen: finite-size scaling, Clusteralgorithmen, Histogramm-Methoden, Renormierungsgruppe. Anwendung auf Boltzmann-Maschinen. Simulation von Nichtgleichgewichtssystemen.

Molekulardynamik-Simulationen: langreichweitige Wechselwirkungen, Ewald-Summation, diskrete Elemente, Parallelisierung.
LernzielDie Vorlesung ist eine Vertiefung von Simulationsmethoden in der statistischen Physik, und daher ideal als Fortführung der Veranstaltung "Introduction to Computational Physics" des Herbstsemesters. Im ersten Teil lernen Studenten die folgenden Methoden anzuwenden: Klassische Monte-Carlo-Simulationen, finite-size scaling, Clusteralgorithmen, Histogramm-Methoden, Renormierungsgruppe. Ausserdem lernen Studenten die Anwendung der Methoden aus der Statistischen Physik auf Boltzmann-Maschinen kennen und lernen wie Nichtgleichgewichtssysteme simuliert werden.

Im zweiten Teil wenden die Studenten Methoden zur Simulation von Molekulardynamiken an. Das beinhaltet unter anderem auch langreichweitige Wechselwirkungen, Ewald-Summation und diskrete Elemente.
InhaltSimulationsmethoden in der statistischen Physik. Klassische Monte-Carlo-Simulationen: finite-size scaling, Clusteralgorithmen, Histogramm-Methoden, Renormierungsgruppe. Anwendung auf Boltzmann-Maschinen. Simulation von Nichtgleichgewichtssystemen. Molekulardynamik-Simulationen: langreichweitige Wechselwirkungen, Ewald-Summation, diskrete Elemente, Parallelisierung.
SkriptSkript und Folien sind online verfügbar und werden bei Bedarf verteilt.
LiteraturLiteraturempfehlungen und Referenzen sind im Skript enthalten.
Voraussetzungen / BesonderesGrundlagenwissen in der Statistischen Physik, Klassischen Mechanik und im Bereich der Rechnergestützten Methoden ist empfohlen.
402-0810-00LComputational Quantum Physics
Fachstudierende UZH müssen das Modul PHY522 direkt an der UZH buchen.
W8 KP2V + 2UM. H. Fischer
KurzbeschreibungThis course provides an introduction to simulation methods for quantum systems. Starting from the one-body problem, a special emphasis is on quantum many-body problems, where we cover both approximate methods (Hartree-Fock, density functional theory) and exact methods (exact diagonalization, matrix product states, and quantum Monte Carlo methods).
LernzielThrough lectures and practical programming exercises, after this course:
Students are able to describe the difficulties of quantum mechanical simulations.
Students are able to explain the strengths and weaknesses of the methods covered.
Students are able to select an appropriate method for a given problem.
Students are able to implement basic versions of all algorithms discussed.
SkriptA script for this lecture will be provided.
LiteraturA list of additional references will be provided in the script.
Voraussetzungen / BesonderesA basic knowledge of quantum mechanics, numerical tools (numerical differentiation and integration, linear solvers, eigensolvers, root solvers, optimization), and a programming language (for the teaching assignments, you are free to choose your preferred one).
402-0448-01LQuantum Information Processing I: Concepts
Dieser theoretisch ausgerichtete Teil QIP I bildet zusammen mit dem experimentell ausgerichteten Teil 402-0448-02L QIP II, die beide im Frühjahrssemester angeboten werden, im Master-Studiengang Physik das experimentelle Kernfach "Quantum Information Processing" mit total 10 ECTS-Kreditpunkten.
W5 KP2V + 1UP. Kammerlander
KurzbeschreibungThe course will cover the key concepts and ideas of quantum information processing, including descriptions of quantum algorithms which give the quantum computer the power to compute problems outside the reach of any classical supercomputer.
Key concepts such as quantum error correction will be described. These ideas provide fundamental insights into the nature of quantum states and measurement.
LernzielBy the end of the course students are able to explain the basic mathematical formalism of quantum mechanics and apply them to quantum information processing problems. They are able to adapt and apply these concepts and methods to analyse and discuss quantum algorithms and other quantum information-processing protocols.
InhaltThe topics covered in the course will include quantum circuits, gate decomposition and universal sets of gates, efficiency of quantum circuits, quantum algorithms (Shor, Grover, Deutsch-Josza,..), error correction, fault-tolerant design, entanglement, teleportation and dense conding, teleportation of gates, and cryptography.
SkriptMore details to follow.
LiteraturQuantum Computation and Quantum Information
Michael Nielsen and Isaac Chuang
Cambridge University Press
Voraussetzungen / BesonderesA good understanding of linear algebra is recommended.
227-0161-00LMolecular and Materials Modelling Information W4 KP2V + 2UD. Passerone, C. Pignedoli
KurzbeschreibungThe course introduces the basic techniques to interpret experiments with contemporary atomistic simulation, including force fields or ab initio based molecular dynamics and Monte Carlo. Structural and electronic properties will be simulated hands-on for realistic systems.
The modern methods of "big data" analysis applied to the screening of chemical structures will be introduced with examples.
LernzielThe ability to select a suitable atomistic approach to model a nanoscale system, and to employ a simulation package to compute quantities providing a theoretically sound explanation of a given experiment. This includes knowledge of empirical force fields and insight in electronic structure theory, in particular density functional theory (DFT). Understanding the advantages of Monte Carlo and molecular dynamics (MD), and how these simulation methods can be used to compute various static and dynamic material properties. Basic understanding on how to simulate different spectroscopies (IR, X-ray, UV/VIS). Performing a basic computational experiment: interpreting the experimental input, choosing theory level and model approximations, performing the calculations, collecting and representing the results, discussing the comparison to the experiment.
Inhalt-Classical force fields in molecular and condensed phase systems
-Methods for finding stationary states in a potential energy surface
-Monte Carlo techniques applied to nanoscience
-Classical molecular dynamics: extracting quantities and relating to experimentally accessible properties
-From molecular orbital theory to quantum chemistry: chemical reactions
-Condensed phase systems: from periodicity to band structure
-Larger scale systems and their electronic properties: density functional theory and its approximations
-Advanced molecular dynamics: Correlation functions and extracting free energies
-The use of Smooth Overlap of Atomic Positions (SOAP) descriptors in the evaluation of the (dis)similarity of crystalline, disordered and molecular compounds
SkriptA script will be made available and complemented by literature references.
LiteraturD. Frenkel and B. Smit, Understanding Molecular Simulations, Academic Press, 2002.

M. P. Allen and D.J. Tildesley, Computer Simulations of Liquids, Oxford University Press 1990.

C. J. Cramer, Essentials of Computational Chemistry. Theories and Models, Wiley 2004

G. L. Miessler, P. J. Fischer, and Donald A. Tarr, Inorganic Chemistry, Pearson 2014.

K. Huang, Statistical Mechanics, Wiley, 1987.

N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders College 1976.

E. Kaxiras, Atomic and Electronic Structure of Solids, Cambridge University Press 2010.
529-0474-00LQuantenchemieW6 KP3GM. Reiher, T. Weymuth
KurzbeschreibungEinführung in Konzepte der Elektronenstruktur-Theorie und in die Methoden der numerischen Quantenchemie; begleitende Übungen mit Papier und Bleistift, sowie Anleitungen zu praktischen Berechnungen mit Quantenchemie-Programmen am Computer.
LernzielChemie kann inzwischen vollständig am Computer betrieben werden, eine intellektuelle Leistung, für die 1998 der Nobelpreis an Pople und Kohn verliehen wurde. Diese Vorlesung zeigt, wie das geht. Erarbeitet wird dabei die Vielteilchen-Quantentheorie von Mehrelektronensystemen (Atome und Moleküle) und ihre Implementierung in Computerprogramme. Es soll ein vollständiges Bild der Quantenchemie vermittelt werden, das alles Rüstzeug zur Verfügung stellt, um selbst solche Berechnungen durchführen zu können (sei es begleitend zum Experiment oder als Start in eine Vertiefung dieser Theorie).
InhaltGrundlegende Konzepte der Vielteilchen-Quantenmechanik. Entwicklung der Mehrelektronentheorie für Atome und Moleküle; beginnend bei der harmonischen Näherung für das Kern-Problem und bei der Hartree-Fock-Theorie für das elektronische Problem über Moeller-Plesset-Störungstheorie und Konfigurationswechselwirkung zu Coupled-Cluster und Multikonfigurationsverfahren. Dichtefunktionaltheorie. Verwendung quantenchemischer Software und Problemlösungen mit dem Computer.
SkriptEin Skript zu allen Vorlesungsstunden wird zur Verfügung gestellt (die aufgearbeitete Theorie wird durch praktische Beispiele kontinuierlich begleitet).

Sämtliche Informationen zur Vorlesung, sowie die links zum Online-Streaming werden auf dieser Webseite bekanntgegeben:
https://reiher.ethz.ch/courses-and-seminars/exercises/QC_2021.html
LiteraturLehrbücher:
F.L. Pilar, Elementary Quantum Chemistry, Dover Publications
I.N. Levine, Quantum Chemistry, Prentice Hall

Hartree-Fock in Basisdarstellung:
A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill

Bücher zur Computerchemie:
F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons
C.J. Cramer, Essentials of Computational Chemistry, John Wiley & Sons
Voraussetzungen / BesonderesVoraussetzungen: einführende Vorlesung in Quantenmechanik (z.B. Physikalische Chemie III: Quantenmechanik)
402-0778-00LParticle Accelerator Physics and Modeling IIW6 KP2V + 1UA. Adelmann
KurzbeschreibungThe effect of nonlinearities on the beam dynamics of charged particles will be discussed. For the nonlinear beam transport, Lie-Methods in combination with differential algebra (DA) and truncated power series (TPS) will be introduced. In the second part we will discuss surrogate model construction for such non-linear dynamical systems using neural networks and polynomial chaos expansion.
LernzielModels for nonlinear beam dynamics can be applied to new or existing particle accelerators.
You create Python based surrogate models of dynamical systems, such as charged particle accelerators using Keras and Tensorflow.
Inhalt- Symplectic Maps and Higher Order Beam Dynamics
- Taylor Modells and Differential Algebra
- Lie Methods
- Normal Forms
- Surrogate Models for dynamical systems
- Surrogate model based neural networks
- Surrogate model based polynomial chaos
- Uncertanty quantification of dynamical systems
SkriptLecture notes
Literatur* Modern Map Methods in Particle Beam Physics
M. Berz (http://bt.pa.msu.edu/pub/papers/AIEP108book/AIEP108book.pdf)
Voraussetzungen / BesonderesIdeally Particle Accelerator Physics and Modelling 1 (PAM-1), however at the beginning of the semester, a crash course is offered introducing the minimum level of particle accelerator modeling needed to follow. This lecture is also suited for PhD. Students.
401-5810-00LSeminar in Physics for CSEW4 KP2SA. Adelmann
KurzbeschreibungIn this seminar the students present a talk on an advanced topic in modern theoretical or computational physics.
Lernziel
  •  Seite  1  von  1