Suchergebnis: Katalogdaten im Frühjahrssemester 2018

Interdisziplinäre Naturwissenschaften Bachelor Information
Biochemisch-Physikalischen Fachrichtung
4. Semester (Biochemisch-Physikalische Richtung)
Obligatorische Fächer: Prüfungsblock
NummerTitelTypECTSUmfangDozierende
402-1782-00LPhysik II
Flankierend zur Vorlesung "Physik II" wird das folgende Fach aus GESS Wissenschaft im Kontext angeboten: 851-0147-01L Philosophische Betrachtungen zur Physik II
W7 KP4V + 2UK. S. Kirch
KurzbeschreibungEinführung in die Wellenlehre, Elektrizität und Magnetismus. Diese Vorlesung stellt die Weiterführung von Physik I dar, in der die Grundlagen der Mechanik gegeben wurden.
LernzielGrundkenntnisse zur Mechanik sowie Elektrizität und Magnetismus sowie die Fähigkeit, physikalische Problemstellungen zu diesen Themen eigenhändig zu lösen.
402-0044-00LPhysik IIW4 KP3VT. Esslinger
KurzbeschreibungEinführung in die Denk- und Arbeitsweise in der Physik unter Zuhilfenahme von Demonstrationsexperimenten: Elektrizität und Magnetismus, Licht, Einführung in die Moderne Physik.
LernzielVermittlung der physikalischen Denk- und Arbeitsweise und Einführung in die Methoden in einer experimentellen Wissenschaft. Der Studenten/in soll lernen physikalische Fragestellungen im eigenen Wissenschaftsbereich zu identifizieren, zu kommunizieren und zu lösen.
InhaltElektrizität und Magnetismus (elektrischer Strom, Magnetfelder, magnetische Induktion, Magnetismus der Materie, Maxwellsche Gleichungen)
Optik (Licht, geometrische Optik, Interferenz und Beugung)
Kurze Einführung in die Quantenphysik
SkriptDie Vorlesung richtet sich nach dem Lehrbuch "Physik" von Paul A. Tipler
LiteraturPaul A. Tipler and Gene Mosca
Physik
Springer Spektrum Verlag
529-0431-00LPhysikalische Chemie III: Molekulare Quantenmechanik Belegung eingeschränkt - Details anzeigen O4 KP4GB. H. Meier, M. Ernst
KurzbeschreibungPostulate der Quantenmechanik, Operatorenalgebra, Schrödingergleichung, Zustandsfunktionen und Erwartungswerte, Matrixdarstellung von Operatoren, das Teilchen im Kasten, Tunnelprozess, harmonische Oszillator, molekulare Schwingungen, Drehimpuls und Spin, verallgemeinertes Pauli Prinzip, Störungstheorie, Variationsprinzip, elektronische Struktur von Atomen und Molekülen, Born-Oppenheimer Näherung.
LernzielEs handelt sich um eine erste Grundvorlesung in Quantenmechanik. Die Vorlesung beginnt mit einem Überblick über die grundlegenden Konzepte der Quantenmechanik und führt den mathematischen Formalismus ein. Im Folgenden werden die Postulate und Theoreme der Quantenmechanik im Kontext der experimentellen und rechnerischen Ermittlung von physikalischen Grössen diskutiert. Die Vorlesung vermittelt die notwendigen Werkzeuge für das Verständnis der elementaren Quantenphänomene in Atomen und Molekülen.
InhaltPostulate und Theoreme der Quantenmechanik: Operatorenalgebra, Schrödingergleichung, Zustandsfunktionen und Erwartungswerte. Lineare Bewegungen: Das freie Teilchen, das Teilchen im Kasten, quantenmechanisches Tunneln, der harmonische Oszillator und molekulare Schwingungen. Drehimpulse: Spin- und Bahnbewegungen, molekulare Rotationen. Elektronische Struktur von Atomen und Molekülen: Pauli-Prinzip, Drehimpulskopplung, Born-Oppenheimer Näherung. Grundlagen der Variations- und Störungtheorie. Behandlung grösserer Systeme (Festkörper, Nanostrukturen).
SkriptEin Vorlesungsskript in Deutsch wird abgegeben. Das Skipt ersetzt allerdings persönliche Notizen NICHT und deckt nicht alle Aspekte der Vorlesung ab.
529-0222-00LOrganic Chemistry IIO3 KP2V + 1UJ. W. Bode, A. Fedorov
KurzbeschreibungDie Vorlesung vermittelt, aufbauend auf der Veranstaltung Organische Chemie I bzw. Organische Chemie II für D-BIOL, fortgeschrittene Konzepte und Mechanismen organischer Reaktionen. Neben einer Einführung in pericyclische Reaktionen und in den Bereich der metallorganischen Chemie, wird gezielt das Planen und Entwickeln von Syntheserouten komplexer organischer Moleküle erlernt.
LernzielDie Vorlesung setzt sich zum Ziel, neben der Vertiefung grundlegender organischer Reaktionen, fortgeschrittene Transformationen organischer Verbindungen (z.B. Mitsunobu Reaktion, Corey-Chaykovsky Epoxidation, Stetter Reaktion etc.) zu vermitteln. Des Weiteren, werden Grundkenntnisse in pericyclischen Reaktionen (z.B. Diels-Alder Reaktion, Claisen Umlagerung etc.) sowie im Bereich der metallorganischen Chemie (z.B. Kreuzkupplungsreaktionen) erworben. Ein wesentlicher Fokus wird dabei auf das ausgeprägte Verständnis von Reaktivität und Reaktionsmechanismen gelegt. Darüber hinaus werden neue Konzepte, wie beispielsweise die FMO Theorie, zur Vorhersage über den Verlauf und Ausgang einer Reaktion eingeführt. Aufbauend auf dem erlernten Repertoire an neuen organischen Reaktionen und dem besseren Verständnis für die Reaktivität organischer Moleküle werden retrosynthetische Analyseansätzen von komplexen organischen Molekülen und Naturstoffen vermittelt. Das anschließende Endziel der Vorlesung ist die eigenständige Planung und Entwicklung mehrstufiger Syntheserouten zur Herstellung komplexer organischer Moleküle.
InhaltOxidation und Reduktion organischer Verbindungen, redoxneutrale Reaktionen und Umlagerungen, fortgeschrittene Transformation funktioneller Gruppen und Reaktionsmechanismen, kinetische und thermodynamische Kontrolle von organisch-chemischen Reaktionen, Reaktivitäten von Carbenen und Nitrenen, Frontier Molekular Orbital (FMO) Theorie, Cycloadditionen und pericyclische Reaktionen, Einführung in die metallorganische Chemie, Kreuzkupplungsreaktionen, Einführung in die Peptidsynthese, Schutzgruppenchemie, Grundlagen der retrosynthetischen Analyse von komplexen organischen Molekülen, Planung mehrstufiger Synthesewege.
SkriptDas Vorlesungsskript sowie zusätzliche Beilagen mit ausführlichem und ergänzendem Inhalt zur Vorlesung werden als PDF Datei kostenlos online aufgeschaltet. Link: http://www.bode.ethz.ch/education.html
LiteraturClayden, Greeves, and Warren. Organic Chemistry, 2nd Edition. Oxford University Press, 2012.
Wahlfächer
Im Bachelor-Studiengang Interdisziplinäre Naturwissenschaften können die Studierenden prinzipiell alle Lehrveranstaltungen wählen, die in einem Bachelor-Studiengang der ETH angeboten werden.

Zu Beginn des 2. Studienjahrs legt jeder Studierende in Absprache mit dem Studiendelegierten für Interdisziplinäre Naturwissenschaften sein/ihr individuelles Studienprogramm fest. Siehe Studienreglement 2010 für Details.
NummerTitelTypECTSUmfangDozierende
529-0058-00LAnalytische Chemie IIW3 KP3GD. Günther, T. Bucheli, M.‑O. Ebert, P. Lienemann, G. Schwarz
KurzbeschreibungVertiefung in den wichtigsten elementaranalytischen und spektroskopischen Methoden sowie ihrer Anwendung in der Praxis, aufbauend auf der Vorlesung Analytische Chemie I. Vorstellung der wichtigsten Trennmethoden.
LernzielPraxisnahe Anwendung und Vertiefung des spektroskopischen und elementaranalytischen Grundwissens der Vorlesung Analytische Chemie I.
InhaltPraxis des kombinierten Einsatzes spektroskopischer Methoden zur Strukturaufklärung und praktischer Einsatz elementaranalytischer Methoden. Komplexere NMR-Methoden: Aufnahmetechnik, analytisch-chemische Anwendungen von Austauschphänomenen, Doppelresonanz, Spin-Gitter-Relaxation, Kern-Overhauser-Effekt, analytisch-chemische Anwendungen der experimentellen 2D- und Multipuls-NMR-Spektroskopie, Verschiebungsreagenzien. Anwendung chromatographischer und elektrophoretischer Trennverfahren: Grundlagen, Arbeitstechnik, Beurteilung der Qualität eines Trennsystems, van-Deemter-Gleichung, Gaschromatographie, Flüssigchromatographie (HPLC, Ionenchromatographie, Gelpermeation, Packungsmaterialien, Gradientenelution, Retentionsindex), Elektrophorese, elektroosmotischer Fluss, Zonenelektrophorese, Kapillarelektrophorese, isoelektrische Fokussierung, Elektrochromatographie, 2D-Gelelektrophorese, SDS-PAGE, Field Flow Fractionation, Vertiefung in Atomabsorptions-Spektroskopie, Atomemissions-Spektroskopie und Röntgenfluoreszenz-Spektroskopie, ICP-OES, ICP-MS.
SkriptEin Skript wird zum Selbstkostenpreis abgegeben.
LiteraturLiteraturlisten werden in der Vorlesung verteilt.
Voraussetzungen / BesonderesÜbungen zur Spektreninterpretation und zu den Trennmethoden erfolgen im Rahmen der Vorlesung. Zusätzlich wird die Veranstaltung 529-0289-00 "Instrumentalanalyse organischer Verbindungen" (4. Semester) empfohlen.

Voraussetzung: 529-0051-00 "Analytische Chemie I (3. Semester)"
401-1662-10LNumerische Methoden Information W6 KP4G + 2UV. C. Gradinaru
KurzbeschreibungDieser Kurs gibt eine Einführung in numerische Methoden für Studierende der Physik. Abgedeckt werden Methoden der linearen Algebra, der Analysis (Nullstellensuche von Funktionen, Integration ) und der
gewöhnlicher Differentialgleichungen. Der Schwerpunkt liegt auf dem Erwerb von Fertigkeiten in der Anwendung von numerischen Verfahren.
LernzielÜbersicht über die wichtigsten Algorithmen zur Lösung der grundlegenden numerischen Probleme in der Physik und ihren Anwendungen;
Übersicht über Software Repositorien zur Problemlösung;
Fertigkeit konkrete Probleme mit diesen Werkzeugen numerisch zu lösen;
Fähigkeit numerische Resultate zu interpretieren
InhaltLineare und nichtlineare Ausgleichsrechnung, nichtlineare Gleichungen (Skalar und Systeme), numerische Integration, Anfangswertprobleme für gewöhnliche Differentialgleichungen
SkriptAuf der Webseite der Vorlesung werden die Vorlesungsnotitzen, Folien und der entstehende Skript so wie weitere relevante Links verfügbar.
LiteraturDie Leseliste wird während der Vorlesung und auf der Web-Seite der Vorlesung bekannt gegeben.
Voraussetzungen / BesonderesErwartet werden solide Kenntnisse in Analysis (Approximation und Vectoranalysis: grad, div, curl) und linearer Algebra (Gauss-Elimination, Matrixzerlegungen, sowie Algorithmen, Vektor- und Matrizenrechnung: Matrixmultiplikation, Determinante, LU-Zerlegung nicht-singulärer Matrizen).
401-1152-02LLineare Algebra IIW7 KP4V + 2UM. Akveld
KurzbeschreibungEigenwerte und Eigenvektoren, Jordan-Normalform, Bilinearformen, Euklidische und Unitäre Vektorräume, ausgewählte Anwendungen.
LernzielVerständnis der wichtigsten Grundlagen der Linearen Algebra.
529-0440-00LPhysical Electrochemistry and ElectrocatalysisW6 KP3GT. Schmidt
KurzbeschreibungFundamentals of electrochemistry, electrochemical electron transfer, electrochemical processes, electrochemical kinetics, electrocatalysis, surface electrochemistry, electrochemical energy conversion processes and introduction into the technologies (e.g., fuel cell, electrolysis), electrochemical methods (e.g., voltammetry, impedance spectroscopy), mass transport.
LernzielProviding an overview and in-depth understanding of Fundamentals of electrochemistry, electrochemical electron transfer, electrochemical processes, electrochemical kinetics, electrocatalysis, surface electrochemistry, electrochemical energy conversion processes (fuel cell, electrolysis), electrochemical methods and mass transport during electrochemical reactions. The students will learn about the importance of electrochemical kinetics and its relation to industrial electrochemical processes and in the energy seactor.
InhaltReview of electrochemical thermodynamics, description electrochemical kinetics, Butler-Volmer equation, Tafel kinetics, simple electrochemical reactions, electron transfer, Marcus Theory, fundamentals of electrocatalysis, elementary reaction processes, rate-determining steps in electrochemical reactions, practical examples and applications specifically for electrochemical energy conversion processes, introduction to electrochemical methods, mass transport in electrochemical systems. Introduction to fuel cells and electrolysis
SkriptWill be handed out during the Semester
LiteraturPhysical Electrochemistry, E. Gileadi, Wiley VCH
Electrochemical Methods, A. Bard/L. Faulkner, Wiley-VCH
Modern Electrochemistry 2A - Fundamentals of Electrodics, J. Bockris, A. Reddy, M. Gamboa-Aldeco, Kluwer Academic/Plenum Publishers
701-0423-00LChemie aquatischer SystemeW3 KP2GL. Winkel
KurzbeschreibungDieser Kurs gibt eine Einführung in die chemischen Prozesse in aquatischen Systemen und zeigt ihre Anwendung in verschiedenen Systemen. Es werden folgende Themen behandelt: Säure-Base-Reaktionen und Carbonatsystem, Löslichkeit fester Phasen und Verwitterung, Redoxreaktionen, Komplexierung der Metalle, Reaktionen an Grenzflächen fest / Wasser, Anwendungen auf See, Fluss, Grundwasser.
LernzielVerständnis für die chemischen Zusammenhänge in aquatischen Systemen. Quantitative Anwendung chemischer Gleichgewichte auf Prozesse in natürlichen Gewässern. Evaluation analytischer Daten aus verschiedenen aquatischen Systemen.
InhaltGrundlagen der Chemie aquatischer Systeme. Regulierung der Zusammensetzung natürlicher Gewässer durch chemische, geochemische und biologische Prozesse. Quantitative Anwendung chemischer Gleichgewichte auf Prozesse in natürlichen Gewässern. Folgende Themen werden behandelt: Säure-Base-Reaktionen (Carbonatsystem); Löslichkeit fester Phasen und Verwitterungsreaktionen; Metallkomplexierung und Metallkreisläufe in Gewässern; Redoxprozesse; Reaktionen an Grenzflächen Festphase-Wasser. Anwendungen auf Seen, Flüsse, Grundwasser.
SkriptUnterlagen werden abgegeben.
LiteraturSigg, L., Stumm, W., Aquatische Chemie, 5. Aufl., vdf/UTB, Zürich, 2011.
701-0401-00LHydrosphäreW3 KP2VR. Kipfer, W. Aeschbach
KurzbeschreibungQualitatives und quantitatives Verständnis für die Prozesse, welche den Wasserkreislauf der Erde, die Energieflüsse sowie die Mischungs- und Transportprozesse in aquatischen Systemen bestimmen. Inhaltliche und methodische Zusammenhänge zwischen Hydrospäre, Atmosphäre und Pedosphäre werden aufgezeigt.
LernzielQualitatives und quantitatives Verständnis für die Prozesse, welche den Wasserkreislauf der Erde, die Energieflüsse sowie die Mischungs- und Transportprozesse in aquatischen Systemen bestimmen. Inhaltliche und methodische Zusammenhänge zwischen Hydrospäre, Atmosphäre und Pedosphäre werden aufgezeigt.
InhaltThemen der Vorlesung.
Physikalische Eigenschaften des Wassers (Dichte und Zustandsgleichung)
- Globale Wasserresourcen
Prozesse an Grenzflächen
- Energieflüsse (thermisch, kinetisch)
- Verdunstung, Gasaustausch
Stehende Oberflächengewässer (Meer, Seen)
- Wärmebilanz
- vertikale Schichtung und globale thermohaline Zirkulation / grossskalige Strömungen
- Turbulenz und Mischung
- Mischprozesse in Fliessgewässern
Grundwasser und seine Dynamik.
- Grundwasser als Teil des hydrologischen Kreislaufs
- Einzugsgebiete, Wasserbilanzen
- Grundwasserströmung: Darcy-Gesetz, Fliessnetze
- hydraulische Eigenschaften
Grundwasserleiter und ihre Eigenschaften
- Hydrogeochemie: Grundwasser und seine Inhaltsstoffe, Tracer
- Wassernutzung: Trinkwasser, Energiegewinnung, Bewässerung
Fallbeispiele: 1. Wasser als Ressource, 2. Wasser und Klima
SkriptErgänzend zu den empfohlenen Lehrmitteln werden Unterlagen abgegeben.
LiteraturDie Vorlesung stützt sich auf folgende Lehrmittel:
a) Park, Ch., 2001, The Environment, Routledge, 2001
b) Price, M., 1996. Introducing groundwater. Chapman & Hall, London u.a.
Voraussetzungen / BesonderesDie Fallbeispiele und die selbständig zu bearbeitende Uebungen sind ein obligatorischer Bestandteil der Lehrveranstaltung.
  •  Seite  1  von  1