Search result: Catalogue data in Autumn Semester 2017

Electrical Engineering and Information Technology Master Information
Major Courses
A total of 42 CP must be achieved during the Master Program. The individual study plan is subject to the tutor's approval.
Subjects of General Interest
227-0377-00LPhysics of Failure and Failure Analysis of Electronic Devices and EquipmentW3 credits2VU. Sennhauser
AbstractFailures have to be avoided by proper design, material selection and manufacturing. Properties, degradation mechanisms, and expected lifetime of materials are introduced and the basics of failure analysis and analysis equipment are presented. Failures will be demonstrated experimentally and the opportunity is offered to perform a failure analysis with advanced equipment in the laboratory.
ObjectiveIntroduction to the degradation and failure mechanisms and causes of electronic components, devices and systems as well as to methods and tools of reliability testing, characterization and failure analysis.
ContentSummary of reliability and failure analysis terminology; physics of failure: materials properties, physical processes and failure mechanisms; failure analysis of ICs, PCBs, opto-electronics, discrete and other components and devices; basics and properties of instruments; application in circuit design and reliability analysis
Lecture notesComprehensive copy of transparencies
363-0790-00LTechnology Entrepreneurship Information W2 credits2VU. Claesson, B. Clarysse
AbstractTechnology ventures are significantly changing the global economic picture. Technological skills increasingly need to be complemented by entrepreneurial understanding.
This course offers the fundamentals in theory and practice of entrepreneurship in new technology ventures. Main topics covered are success factors in the creation of new firms, including founding, financing and growing a venture.
ObjectiveThis course provides theory-grounded knowledge and practice-driven skills for founding, financing, and growing new technology ventures. A critical understanding of dos and don'ts is provided through highlighting and discussing real life examples and cases.
ContentSee course website:
Lecture notesLecture slides and case material
151-0317-00LVisualization, Simulation and Interaction - Virtual Reality IIW4 credits3GA. Kunz
AbstractThis lecture provides deeper knowledge on the possible applications of virtual reality, its basic technolgy, and future research fields. The goal is to provide a strong knowledge on Virtual Reality for a possible future use in business processes.
ObjectiveVirtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technolgy for net-based collaboration, the transmission of images and other data, the interaction of the human user with the digital environment, or the use of augmented reality systems.
The goal of the lecture is to provide a deeper knowledge of today's VR environments that are used in business processes. The technical background, the algorithms, and the applied methods are explained more in detail. Finally, future tasks of VR will be discussed and an outlook on ongoing international research is given.
ContentIntroduction into Virtual Reality; basisc of augmented reality; interaction with digital data, tangible user interfaces (TUI); basics of simulation; compression procedures of image-, audio-, and video signals; new materials for force feedback devices; intorduction into data security; cryptography; definition of free-form surfaces; digital factory; new research fields of virtual reality
Lecture notesThe handout is available in German and English.
Prerequisites / NoticePrerequisites:
"Visualization, Simulation and Interaction - Virtual Reality I" is recommended.

Didactical concept:
The course consists of lectures and exercises.
  •  Page  1  of  1