Suchergebnis: Katalogdaten im Herbstsemester 2016
Biomedical Engineering Master ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() Während des Studiums müssen mindestens 12 KP aus Kernfächern einer Vertiefung (Track) erreicht werden. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
227-0385-10L | Biomedical Imaging | W | 6 KP | 5G | S. Kozerke, K. P. Prüssmann, M. Rudin | |
Kurzbeschreibung | Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques. | |||||
Lernziel | To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts. | |||||
Inhalt | - X-ray imaging - Computed tomography - Single photon emission tomography - Positron emission tomography - Magnetic resonance imaging - Ultrasound/Doppler imaging | |||||
Skript | Lecture notes and handouts | |||||
Literatur | Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011 | |||||
Voraussetzungen / Besonderes | Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming | |||||
227-0386-00L | Biomedical Engineering ![]() | W | 4 KP | 3G | J. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong | |
Kurzbeschreibung | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined. | |||||
Lernziel | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations. | |||||
Inhalt | Introduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism. Practical and theoretical exercises in small groups in the laboratory. | |||||
Skript | Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino AND https://www1.ethz.ch/lbb/Education/BME | |||||
227-0447-00L | Image Analysis and Computer Vision ![]() | W | 6 KP | 3V + 1U | L. Van Gool, O. Göksel, E. Konukoglu | |
Kurzbeschreibung | Light and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition. | |||||
Lernziel | Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises. | |||||
Inhalt | The first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. | |||||
Skript | Course material Script, computer demonstrations, exercises and problem solutions | |||||
Voraussetzungen / Besonderes | Prerequisites: Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C. The course language is English. | |||||
227-0965-00L | Micro and Nano-Tomography of Biological Tissues | W | 4 KP | 3G | M. Stampanoni, P. A. Kaestner | |
Kurzbeschreibung | Einführung in die physikalischen und technischen Grundkenntnisse der tomographischen Röntgenmikroskopie. Verschiedene Röntgenbasierten-Abbildungsmechanismen (Absorptions-, Phasen- und Dunkelfeld-Kontrast) werden erklärt und deren Einsatz in der aktuellen Forschung vorgestellt, insbesondere in der Biologie. Die quantitative Auswertung tomographische Datensätzen wird ausführlich beigebracht. | |||||
Lernziel | Einführung in die Grundlagen der Röntgentomographie auf der Mikrometer- und Nanometerskala, sowie in die entsprechenden Bildbearbeitungs- und Quantifizierungsmethoden, unter besonderer Berücksichtigung von biologischen Anwendungen. | |||||
Inhalt | Synchrotron basierte Röntgenmikro- und Nanotomographie ist heutzutage eine leistungsfähige Technik für die hochaufgelösten zerstörungsfreien Untersuchungen einer Vielfalt von Materialien. Die aussergewöhnlichen Stärke und Kohärenz der Strahlung einer Synchrotronquelle der dritten Generation erlauben quantitative drei-dimensionale Aufnahmen auf der Mikro- und Nanometerskala und erweitern die klassischen Absorption-basierten Verfahrensweisen auf die kontrastreicheren kantenverstärkten und phasenempfindlichen Methoden, die für die Analyse von biologischen Proben besonders geeignet sind. Die Vorlesung umfasst eine allgemeine Einführung in die Grundsätze der Röntgentomographie, von der Bildentstehung bis zur 3D Bildrekonstruktion. Sie liefert die physikalischen und technischen Grundkentnisse über die bildgebenden Synchrotronstrahllinien, vertieft die neusten Phasenkontrastmethoden und beschreibt die ersten Anwendungen nanotomographischer Röntgenuntersuchungen. Schliesslich liefert der Kurs den notwendigen Hintergrund, um die quantitative Auswertung tomographischer Daten zu verstehen, von der grundlegenden Bildanalyse bis zur komplexen morphometrischen Berechnung und zur 3D-Visualisierung, unter besonderer Berücksichtigung von biomedizinischen Anwendungen. | |||||
Skript | Online verfügbar | |||||
Literatur | Wird in der Vorlesung angegeben. | |||||
376-1651-00L | Clinical and Movement Biomechanics | W | 4 KP | 3G | S. Lorenzetti, R. List, N. Singh | |
Kurzbeschreibung | Measurement and modeling of the human movement during daily activities and in a clinical environment. | |||||
Lernziel | The students are able to analyse the human movement from a technical point of view, to process the data and perform modeling with a focus towards clinical application. | |||||
Inhalt | This course includes study design, measurement techniques, clinical testing, accessing movement data and anysis as well as modeling with regards to human movement. | |||||
376-1985-00L | Trauma Biomechanics | W | 4 KP | 2V + 1U | K.‑U. Schmitt, M. H. Muser | |
Kurzbeschreibung | Trauma-Biomechanik ist ein interdiszipliäres Fach, das sich mit der Biomechanik von Verletzungen sowie Möglichkeiten zur Prävention von Verletzungen beschäftigt. Die Vorlesung stellt die Grundlagen der Trauma-Biomechanik dar. | |||||
Lernziel | Vermittlung von Grundlagen der Trauma-Biomechanik. | |||||
Inhalt | Die Vorlesung beschäftigt sich mit Verletzungen des menschlichen Körpers und den zugrunde liegenden Verletzungsmechanismen. Hierbei bilden Verletzungen, die im Strassenverkehr erlitten werden, den Schwerpunkt. Weitere Vorlesungsthemen sind: Crash-Tests und die dazugehörige Messtechnik (z. B. Dummys), sowie aktuelle Themen der Trauma-Biomechanik wie z.B. Fussgänger-Kollisionen, Kinderrückhaltesysteme und Fahrzeugsitze. | |||||
Skript | Unterlagen werden zur Verfügung gestellt. | |||||
Literatur | Schmitt K-U, Niederer P, M. Muser, Walz F: "Trauma Biomechanics - An Introduction to Injury Biomechanics" bzw. "Trauma-Biomechanik - Einführung in die Biomechanik von Verletzungen", beide Springer Verlag. |
Seite 1 von 1