Suchergebnis: Katalogdaten im Herbstsemester 2016
Physik Bachelor ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
![]() ![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
401-2303-00L | Funktionentheorie ![]() | O | 6 KP | 3V + 2U | R. Pandharipande | |
Kurzbeschreibung | Komplexe Funktionen einer komplexen Veränderlichen, Cauchy-Riemann Gleichungen, Cauchyscher Integralsatz, Singularitäten, Residuensatz, Umlaufzahl, analytische Fortsetzung, spezielle Funktionen, konforme Abbildungen. Riemannscher Abbildungssatz. | |||||
Lernziel | Fähigkeit zum Umgang mit analytischen Funktion; insbesondre Anwendungen des Residuensatzes | |||||
Literatur | Th. Gamelin: Complex Analysis. Springer 2001 E. Titchmarsh: The Theory of Functions. Oxford University Press D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German) L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co. B. Palka: "An introduction to complex function theory." Undergraduate Texts in Mathematics. Springer-Verlag, 1991. K.Jaenich: Funktionentheorie. Springer Verlag R.Remmert: Funktionentheorie I. Springer Verlag E.Hille: Analytic Function Theory. AMS Chelsea Publications | |||||
401-2333-00L | Methoden der mathematischen Physik I | O | 6 KP | 3V + 2U | C. A. Keller | |
Kurzbeschreibung | Fourierreihen. Lineare partielle Differentialgleichungen der mathematischen Physik. Fouriertransformation. Spezielle Funktionen und Eigenfunktionenentwicklungen. Distributionen. Ausgewählte Probleme aus der Quantenmechanik. | |||||
Lernziel | ||||||
Voraussetzungen / Besonderes | Die Einschreibung in die Übungsgruppen erfolgt online. Melden Sie sich im Laufe der ersten Semesterwoche unter echo.ethz.ch mit Ihrem ETH Account an. Der Übungsbetrieb beginnt in der zweiten Semesterwoche. | |||||
402-2883-00L | Physik III | O | 7 KP | 4V + 2U | J. Home | |
Kurzbeschreibung | Einführung in das Gebiet der Quanten- und Atomphysik und in die Grundlagen der Optik und statistischen Physik. | |||||
Lernziel | Grundlegende Kenntnisse in Quanten- und Atomphysik und zudem in Optik und statistischer Physik werden erarbeitet. Die Fähigkeit zur eigenständigen Lösung einfacher Problemstellungen aus den behandelten Themengebieten wird erreicht. Besonderer Wert wird auf das Verständnis experimenteller Methoden zur Beobachtung der behandelten physikalischen Phänomene gelegt. | |||||
Inhalt | Einführung in die Quantenphysik: Atome, Photonen, Photoelektrischer Effekt, Rutherford Streuung, Compton Streuung, de-Broglie Materiewellen. Quantenmechanik: Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialtopf, harmonischer Oszillator, Wasserstoffatom, Spin. Atomphysik: Zeeman-Effekt, Spin-Bahn Kopplung, Mehrelektronenatome, Röntgenspektren, Auswahlregeln, Absorption und Emission von Strahlung, LASER. Optik: Fermatsches Prinzip, Linsen, Abbildungssysteme, Beugung und Brechung, Interferenz, geometrische und Wellenoptik, Interferometer, Spektrometer. Statistische Physik: Wahrscheinlichkeitsverteilungen, Boltzmann-Verteilung, statistische Ensembles, Gleichverteilungssatz, Schwarzkörperstrahlung, Plancksches Strahlungsgesetz. | |||||
Skript | Im Rahmen der Veranstaltung wird ein Skript in elektronischer Form zur Verfügung gestellt. | |||||
Literatur | Quantenmechanik/Atomphysik/Moleküle: "Atom- und Quantenphysik", H. Haken and H. C. Wolf, ISBN 978-3540026211 Optik: "Optik", E. Hecht, ISBN 978-3486588613 Statistische Mechanik: "Statistical Physics", F. Mandl ISBN 0-471-91532-7 | |||||
![]() ![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
402-2203-01L | Allgemeine Mechanik ![]() | O | 7 KP | 4V + 2U | G. M. Graf | |
Kurzbeschreibung | Begriffliche und methodische Einführung in die theoretische Physik: Newtonsche Mechanik, Zentralkraftproblem, Schwingungen, Lagrangesche Mechanik, Symmetrien und Erhaltungssätze, Kreisel, relativistische Raum-Zeit-Struktur, Teilchen im elektromagnetischen Feld, Hamiltonsche Mechanik, kanonische Transformationen, integrable Systeme, Hamilton-Jacobi-Gleichung. | |||||
Lernziel | ||||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
402-0205-00L | Quantenmechanik I ![]() | O | 10 KP | 3V + 2U | T. K. Gehrmann | |
Kurzbeschreibung | Einführung in die nicht-relativistische Einteilchen-Quantenmechanik. Diskussion grundlegender Ideen der Quantenmechanik, insbesondere Quantisierung klassischer Systeme, Wellenfunktionen und die Beschreibung von Observablen durch Operatoren auf einem Hilbertraum, und die Analyse von Symmetrien. Grundlegende Phänomene werden analysiert und durch generische Beispiele illustriert. | |||||
Lernziel | Einführung in die Einteilchen Quantenmechanik. Beherrschung grundlegender Ideen (Quantisierung, Operatorformalismus, Symmetrien, Störungstheorie) und generischer Beispiele und Anwendungen (gebunden Zustände, Tunneleffekt, Streutheorie in ein- und dreidimensionalen Problemen). Fähigkeit zur Lösung einfacher Probleme. | |||||
Inhalt | Stichworte: Schrödinger-Gleichung, Formalismus der Quantenmechanik (Zustände, Operatoren, Kommutatoren, Messprozess), Symmetrien (Translation, Rotationen), Quantenmechanik in einer Dimension, Zentralkraftprobleme, Potentialstreuung, Störungstheorie, Variations-Verfahren, Drehimpuls, Spin, Drehimpulsaddition, Relation QM und klassische Physik. | |||||
Literatur | F. Schwabl: Quantenmechanik J.J. Sakurai: Modern Quantum Mechanics W. Nolting: Quantenmechanik (Theoretische Physik 5.1, 5.2) C. Cohen-Tannoudji: Quantenmechanik I |
Seite 1 von 1