Search result: Catalogue data in Autumn Semester 2022
Mechanical Engineering Bachelor ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-0363-10L | Analysis III ![]() | O | 3 credits | 2V + 1U | A. Iozzi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to partial differential equations. Differential equations which are important in applications are classified and solved. Elliptic, parabolic and hyperbolic differential equations are treated. The following mathematical tools are introduced: Laplace transforms, Fourier series, separation of variables, methods of characteristics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Mathematical treatment of problems in science and engineering. To understand the properties of the different types of partial differential equations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Laplace Transforms: - Laplace Transform, Inverse Laplace Transform, Linearity, s-Shifting - Transforms of Derivatives and Integrals, ODEs - Unit Step Function, t-Shifting - Short Impulses, Dirac's Delta Function, Partial Fractions - Convolution, Integral Equations - Differentiation and Integration of Transforms Fourier Series, Integrals and Transforms: - Fourier Series - Functions of Any Period p=2L - Even and Odd Functions, Half-Range Expansions - Forced Oscillations - Approximation by Trigonometric Polynomials - Fourier Integral - Fourier Cosine and Sine Transform Partial Differential Equations: - Basic Concepts - Modeling: Vibrating String, Wave Equation - Solution by separation of variables; use of Fourier series - D'Alembert Solution of Wave Equation, Characteristics - Heat Equation: Solution by Fourier Series - Heat Equation: Solutions by Fourier Integrals and Transforms - Modeling Membrane: Two Dimensional Wave Equation - Laplacian in Polar Coordinates: Circular Membrane, Fourier-Bessel Series - Solution of PDEs by Laplace Transform | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes by Prof. Dr. Alessandra Iozzi: https://polybox.ethz.ch/index.php/s/D3K0TayQXvfpCAA | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10. Auflage, 2011 C. R. Wylie & L. Barrett, Advanced Engineering Mathematics, McGraw-Hill, 6th ed. S.J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Books on Mathematics, NY. G. Felder, Partielle Differenzialgleichungen für Ingenieurinnen und Ingenieure, hypertextuelle Notizen zur Vorlesung Analysis III im WS 2002/2003. Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005 For reference/complement of the Analysis I/II courses: Christian Blatter: Ingenieur-Analysis https://people.math.ethz.ch/~blatter/dlp.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0503-00L | Dynamics | O | 6 credits | 4V + 2U | D. Kochmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Dynamics of particles, rigid bodies and deformable bodies: Motion of a single particle, motion of systems of particles, 2D and 3D motion of rigid bodies, vibrations, waves | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | This course provides Bachelor students of mechanical and civil engineering with fundamental knowledge of the kinematics and dynamics of mechanical systems. By studying the motion of a single particle, systems of particles, of rigid bodies and of deformable bodies, we introduce essential concepts such as kinematics, kinetics, work and energy, equations of motion, and forces and torques. Further topics include the stability of equilibria and vibrations as well as an introduction to the dynamics of deformable bodies and waves in elastic rods. Throughout the course, the basic principles and application-oriented examples presented in the lectures and weekly exercise sessions help students aquire a proficient background in engineering dynamics, learn and embrace problem-solving techniques for dynamical engineering problems, gain cross-disciplinary expertise (by linking concepts from, among others, mechanics, mathematics, and physics), and prepare students for advanced courses and work on engineering applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Motion of a single particle: kinematics (trajectory, velocity, acceleration), forces and torques, constraints, active and reaction forces, balance of linear and angular momentum, work-energy balance, conservative systems, equations of motion. 2. Motion of systems of particles: internal and external forces, balance of linear and angular momentum, work-energy balance, rigid systems of particles, particle collisions, mass accretion/loss. 3. Motion of rigid bodies in 2D and 3D: kinematics (angular velocity, velocity and acceleration transfer, instantaneous center and axis of rotation), balance of linear and angular momentum, work-energy balance, angular momentum transport, inertial vs. moving reference frames, apparent forces, Euler equations. 4. Vibrations: Lagrange equations, concepts of stability, single-DOF oscillations (natural frequency, free-, damped-, and forced response), multi-DOF oscillations (natural frequencies, eigenmodes, free-, damped-, and forced response). 5. Introduction to waves and vibrations in deformable elastic bodies: local form of linear momentum balance, waves and vibrations in slender elastic rods. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes (a scriptum) will be available on Moodle. Students are strongly encouraged to take their own notes during class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | A complete set of lecture notes (a scriptum) is available on Moodle. Further reading materials are suggested but not required for this class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | All course materials (including lecture notes, exercise problems, etc.) are available on Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0303-00L | Dimensioning I | O | 3 credits | 3G | D. Mohr, B. Berisha, E. Mazza | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to Dimensioning of components and machine parts. Basic structural theories are introduced and a short introduction to finite elements is given. Further, elements from fracture mechanics, plasticity and stability of structures are presented. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The goal of the lecture is to build on and extend the theories from Mechanics 2. Students learn how to implement adequate models for practical dimensioning problems in mechanical engineering and how to solve and critically interpret these models. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Basic problem of continuum mechanics - Structural theories - Introduction to finite element methods - Strength of materials - Fatigue - Stability of structures | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Will be announced during the first lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Will be announced during the first lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0051-00L | Thermodynamics I | O | 4 credits | 2V + 2U | A. Bardow, C. Müller | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the fundamentals of technical thermodynamics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Introduction to the fundamentals of technical thermodynamics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Konzepte und Definitionen 2. Der erste Hauptsatz, der Begriff der Energie und Anwendungen für geschlossene Systeme 3. Eigenschaften reiner kompressibler Substanzen, quasistatische Zustandsänderungen 4. Elemente der kinetischen Gastheorie 5. Der erste Hauptsatz in offenen Systemen - Energieanalyse in einem Kontrollvolumen 6. Der zweite Hauptsatz - Der Begriff der Entropie 7. Nutzbarkeit der Energie - Exergie 8. Thermodynamische Beziehungen für einfache, kompressible Substanzen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | available | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | M.J. Moran, H.N Shapiro, D.D. Boettner and M.B. Bailey, Principles of Engineering Thermodynamics, 8th Edition, John Wiley and Sons, 2015. H.D. Baehr and S. Kabelac, Thermodynamik, 15. Auflage, Springer Verlag, 2012. P. Stephan, K. Schaber, K. Stephan and F. Mayinger, Thermodynamik – Grundlagen und technische Anwendungen, 19th edition, Springer Verlag, 2013. https://link.springer.com/book/10.1007%2F978-3-642-30098-1 H. Herwig, C. Kautz and A. Moschallski, Technische Thermodynamik, 2nd edition, Springer Vieweg, 2016. https://link.springer.com/book/10.1007%2F978-3-658-11888-4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0591-00L | Control Systems I ![]() Note: The previous course title in German until HS21 "Regelungstechnik I". | O | 4 credits | 2V + 2U | E. Frazzoli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Analysis and controller synthesis for linear time invariant systems with one input and one output signal (SISO); transition matrix; stability; controllability; observability; Laplace transform; transfer functions; transient and steady state responses. PID control; dynamic compensators; Nyquist theorem. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Identify the role and importance of control systems in everyday life. Obtain models of single-input single-output (SISO) linear time invariant (LTI) dynamical systems. Linearization of nonlinear models. Interpret stability, observability and controllability of linear systems. Describe and associate building blocks of linear systems in time and frequency domain with equations and graphical representations (Bode plot, Nyquist plot, root locus). Design feedback controllers to meet stability and performance requirements for SISO LTI systems. Explain differences between expected and actual control results. Notions of robustness and other nuisances such as discrete time implementation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Modeling and linearization of dynamic systems with single input and output signals. State-space description. Analysis (stability, reachability, observability, etc.) of open-loop systems. Laplace transformation, systems analysis in the frequency domain. Transfer functions and analysis of the influence of its poles and zeros on the system's dynamic behavior. Frequency response. Analysis of closed-loop systems using the Nyquist criterion. Formulation of performance constraints. Specification of closed-loop system behavior. Synthesis of elementary closed-loop control systems (PID, lead/lag compensation, loop shaping). Discrete time state space representation and stability analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides and additional material will be posted online. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | There is no required textbook. A nice introductory book on feedback control, available online for free, is : Feedback Systems: An Introduction for Scientists and Engineers Karl J. Astrom and Richard M. Murray The book can be downloaded at https://fbswiki.org/wiki/index.php/Main_Page | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic knowledge of (complex) analysis and linear algebra. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0033-10L | Physics I Der Kurs wird zum letzten Mal im HS22 angeboten. | O | 6 credits | 4V + 2U | L. Degiorgi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This is a one-semester course introducing students into the foundations of Modern Physics. Topics include electricity and magnetism, light, oscillations and waves with Doppler effect. Selected topics with important applications in industry will also be considered. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The lecture is intended to promote critical, scientific thinking. Key concepts of Physics will be acquired, with a focus on technically relevant applications. At the end of the semester, students will have a good overview over the topics of classical and modern Physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Electric and magnetic fields, current, magnetism, Maxwell's equations, oscillations, waves. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Notes from lectures will be available (in German). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Hans J. Paus, Physik in Experimenten und Beispielen, Carl Hanser Verlag München Wien (textbook for the lecture), ca. 50 Euro. alternative E-Book: P.A. Tipler and G. Mosca, Physics for scientists and engineers, W.H. Freeman and Company, New York | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() The Engineering Tools courses are for MAVT Bachelor’s degree students only. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0021-00L | Engineering Tool: Introduction to MATLAB ![]() The Engineering Tools courses are for MAVT Bachelor’s degree students only. | W+ | 0.4 credits | 1K | B. Berisha | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to MATLAB; vectors and matrices; graphics in MATLAB; calculus, differential equations; programming with MATLAB; data analysis and statistics; interpolation and polynomials. Excercises with solutions: using MATLAB commands, technical applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Introduction to numerical calculations with MATLAB. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to MATLAB; vectors and matrices; graphics in MATLAB; calculus, differential equations; programming with MATLAB; data analysis and statistics; interpolation and polynomials. Excercises with solutions: using MATLAB commands, technical applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Course material: https://moodle-app2.let.ethz.ch/course/view.php?id=15113 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Der Kurs findet in einem Hörsaal statt und es stehen keine Rechner zur Verfügung. Es wird empfohlen, dass pro zwei Studierenden mindestens ein Laptop mit installiertem Matlab mitgebracht wird. Installation Matlab: - es funktionieren alle Versionen - netzunabhängige Node-Lizenz (z.B. zum Download im ETH IT Shop) - folgende Toolboxes/Features müssen installiert sein: Simulink (wird für RT1 benutzt), Curve Fitting Toolbox, Optimization Toolbox, Symbolic Toolbox, Global Optimization Toolbox | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
252-0863-00L | Engineering Tool: Advanced Programming with C++ ![]() ![]() All Engineering Tool courses are for MAVT-Bachelor students only. | W+ | 0.4 credits | 1K | F. Friedrich Wicker | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The programming model of C++ is discussed in some depth. In particular the mechanisms for efficient memory management and generic programming with C++ are covered. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Ability to implement memory-efficient data structures and efficient generic algorithms using C++. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Vectors, pointers and iterators, range for, keyword auto, a class for vectors, subscript-operator, move-construction and iteration. RAII (Resouce Allocation is Initialization) Principle, Templates and Generic Programming, Functors and Lambda Expressions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Detailled, bilingual slides of the lectures will be made available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | B.Stroustrup, The C++ Programming Language (4th Edition), Addison Wesley 2013. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Lecture Series Informatik I 252-0832-00L or equivalent knowledge in programming with C++. Course can only be taken if the programming project is executed and submitted. If no solution to the programming project is submitted, the course is considered failed («no show»). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0261-00L | Thermodynamics III | O | 3 credits | 2V + 1U | R. S. Abhari, A. Steinfeld | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Technical applications of engineering thermodynamics. Extension of thermodynamical fundamentals taught in Thermodynamics I and II. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Understand and apply thermodynamic principles and processes for use in a range of cycles used commonly in practice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Radiation Heat Transfer, Heat Exchangers, Ideal Gas Mixtures & Psychrometry, Steam Processes, Gas Power Processes, Internal Combustion Engines, Gas Turbine Processes, Refrigeration & Heat Pumps | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0103-00L | Fluid Dynamics II | O | 3 credits | 2V + 1U | P. Jenny | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Two-dimensional irrotational (potential) flows: stream function and potential, singularity method, unsteady flow, aerodynamic concepts. Vorticity dynamics: vorticity and circulation, vorticity equation, vortex theorems of Helmholtz and Kelvin. Compressible flows: isentropic flow along stream tube, normal and oblique shocks, Laval nozzle, Prandtl-Meyer expansion, viscous effects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Expand basic knowledge of fluid dynamics. Concepts, phenomena and quantitative description of irrotational (potential), rotational, and one-dimensional compressible flows. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Two-dimensional irrotational (potential) flows: stream function and potential, complex notation, singularity method, unsteady flow, aerodynamic concepts. Vorticity dynamics: vorticity and circulation, vorticity equation, vortex theorems of Helmholtz and Kelvin. Compressible flows: isentropic flow along stream tube, normal and oblique shocks, Laval nozzle, Prandtl-Meyer expansion, viscous effects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes are available (in German). (See also info on literature below.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Relevant chapters (corresponding to lecture notes) from the textbook P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 5th ed., 2011 (includes a free copy of the DVD "Multimedia Fluid Mechanics") P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 6th ed., 2015 (does NOT include a free copy of the DVD "Multimedia Fluid Mechanics") | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Analysis I/II, Knowledge of Fluid Dynamics I, thermodynamics of ideal gas | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0573-00L | System Modeling ![]() | W | 4 credits | 2V + 1U | L. Guzzella | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to system modeling for control. Generic modeling approaches based on first principles, Lagrangian formalism, energy approaches and experimental data. Model parametrization and parameter estimation. Basic analysis of linear and nonlinear systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Learn how to mathematically describe a physical system or a process in the form of a model usable for analysis and control purposes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This class introduces generic system-modeling approaches for control-oriented models based on first principles and experimental data. The class will span numerous examples related to mechatronic, thermodynamic, chemistry, fluid dynamic, energy, and process engineering systems. Model scaling, linearization, order reduction, and balancing. Parameter estimation with least-squares methods. Various case studies: loud-speaker, turbines, water-propelled rocket, geostationary satellites, etc. The exercises address practical examples. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The handouts in English will be available in digital form. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | A list of references is included in the handouts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0575-01L | Signals and Systems ![]() | W | 4 credits | 2V + 2U | A. Carron | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Signals arise in most engineering applications. They contain information about the behavior of physical systems. Systems respond to signals and produce other signals. In this course, we explore how signals can be represented and manipulated, and their effects on systems. We further explore how we can discover basic system properties by exciting a system with various types of signals. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Master the basics of signals and systems. Apply this knowledge to problems in the homework assignments and programming exercise. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Discrete-time signals and systems. Fourier- and z-Transforms. Frequency domain characterization of signals and systems. System identification. Time series analysis. Filter design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes available on course website. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Control Systems I is helpful but not required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0917-00L | Mass Transfer | W | 4 credits | 2V + 2U | S. E. Pratsinis, V. Mavrantzas, C.‑J. Shih | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Cussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0973-00L | Introduction to Process Engineering | W | 4 credits | 2V + 2U | F. Donat, C. Müller | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Overview of process engineering; fundamentals of process engineering; processes and balances; overview of thermal separation processes and multiphase systems; overview of mechanical separation processes and granular systems; introduction into reaction engineering, reactors and residence times. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | We teach the fundamentals of process engineering using practical examples as well as concrete process engineering problems in the areas of process control and balancing, thermal separation processes, mechanical separation processes and reaction engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Overview of process engineering; fundamentals of process engineering; processes and balances; overview of thermal separation processes and multiphase systems; overview of mechanical separation processes and granular systems; introduction into reaction engineering, reactors and residence times. In addition to teaching basic theoretical knowledge, the focus is on solving typical problems in various subdisciplines of process engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script is provided (German language). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Further literature will be announced during the course. For the successful completion of the course, the lecture notes, the slides of the lecture and the exercise materials are sufficient. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-3207-00L | Lightweight | W | 4 credits | 2V + 2U | P. Ermanni, T. Tancogne-Dejean, M. Zogg | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The elective course Lightweight includes numerical methods for the analysis of the load carrying and failure behavior of lightweight structures, as well as construction methods and design principles for lightweight design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The goal of this course is to convey substantiated background for the understanding and the design and sizing of modern lightweight structures in mechanical engineering, vehicle and airplane design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Lightweight design Thin-walled beams and structures Instability behavior of thin walled structures Reinforced shell structures Load introduction in lightweight structures Joining technology Sandwich design | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Script, Handouts, Exercises | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0076-00L | Electrical Engineering II | W | 4 credits | 2V + 2U | C. Studer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Sinusoidal signals and systems in the time and frequency domain, principle of operation and design of basic analog and digital circuits as well as analog-digital conversion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | see above | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Beschreibung von sinusförmigen Signalen und Systemen im Zeit- und Frequenzbereich, Funktion grundlegender analoger und digitaler Schaltungen sowie von Analog-Digital-Wandlern. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
351-0511-00L | Managerial Economics Not for MSc students belonging to D-MTEC! | W | 4 credits | 3V | O. Krebs, P. Egger, M. Köthenbürger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | "Managerial Economics" provides an introduction to the theories and methods from Economics and Management Science to analyze economic decision-making in the context of markets. The course targets students with no prior knowledge in Economics and Management. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The objective of this course is to provide an introduction to microeconomic thinking. Based on the fundamental principles of economic analysis (optimization and equilibrium), the focus lies on understanding key economic concepts relevant for understanding and analyzing economic behavior of firms and consumers in the context of markets. Market demand and supply are derived from the individual decision-making of economic agents and market outcomes under different assumptions about the market structure and market power (perfect competition, monopoly, oligopoly, game theory) are studied. This introductory course aims at providing essential knowledge from the fields of Economics and Management relevant for economic decision-making in the context of both the private and public sector. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Microeconomics by Robert Pindyck & Daniel Rubinfeld, 9th edition 2018, The Pearson series in economics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course targets both Bachelor and Master students. No prior knowledge in the areas of Economics and Management is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-0435-00L | Computational Methods for Engineering Applications ![]() | W | 4 credits | 2V + 2U | S. Mishra | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course gives an introduction to the numerical methods for the solution of ordinary and partial differential equations that play a central role in engineering applications. Both basic theoretical concepts and implementation techniques necessary to understand and master the methods will be addressed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | At the end of the course the students should be able to: - implement numerical methods for the solution of ODEs (= ordinary differential equations); - identify features of a PDE (= partial differential equation) based model that are relevant for the selection and performance of a numerical algorithm; - implement the finite difference, finite element and finite volume method for the solution of simple PDEs using C++; - read engineering research papers on numerical methods for ODEs or PDEs. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Initial value problems for ODE: review of basic theory for ODEs, Forward and Backward Euler methods, Taylor series methods, Runge-Kutta methods, basic stability and consistency analysis, numerical solution of stiff ODEs. Two-point boundary value problems: Green's function representation of solutions, Maximum principle, finite difference schemes, stability analysis. Elliptic equations: Laplace's equation in one and two space dimensions, finite element methods, implementation of finite elements, error analysis. Parabolic equations: Heat equation, Fourier series representation, maximum principles, Finite difference schemes, Forward (backward) Euler, Crank-Nicolson method, stability analysis. Hyperbolic equations: Linear advection equation, method of characteristics, upwind schemes and their stability. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Script will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Chapters of the following book provide supplementary reading and are not meant as course material: - A. Tveito and R. Winther, Introduction to Partial Differential Equations. A Computational Approach, Springer, 2005. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | (Suggested) Prerequisites: Analysis I-III (for D-MAVT), Linear Algebra, Models, Algorithms and Data: Introduction to Computing, basic familiarity with programming in C++. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-0603-00L | Stochastics (Probability and Statistics) ![]() ![]() This course unit is offered for the last time in the Autumn Semester 2022. | W | 4 credits | 2V + 1U | P. Cheridito | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The following concepts are covered: probabilities, random variables, probability distributions, joint and conditional probabilities and distributions, law of large numbers, central limit theorem, descriptive statistics, statistical inference, parameter estimation, confidence intervals, statistical tests, two-sample tests, linear regression. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Knowledge of the basic principles of probability theory and statistics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to probability theory and statistics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | https://stat.ethz.ch/~meier/teaching/skript-intro/skript.pdf | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Lukas Meier: Wahrscheinlichkeitsrechnung und Statistik: Eine Einführung für Verständnis, Intuition und Überblick. Springer, 2020. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0073-10L | GyroWheeler ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | R. Siegwart | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0073-20L | SURF‐eDNA ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | R. Katzschmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students create a biomimetic underwater system capable of the autonomous collection of information about biodiversity in aquatic ecosystems. The students learn to work in teams, structure problems, identify solutions, perform system analysis, and present. They have access to rapid prototyping facilities and the latest engineering tools. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | SURF-eDNA integrates an environmental DNA (eDNA) filter, camera, and swimming autonomy into a biomimetic soft underwater robotic fish (SURF). The goal of the project is to create a biomimetic underwater system capable of the autonomous collection of information about biodiversity in aquatic ecosystems. The system has to be minimally invasive and disruptive to the ecosystem it will be deployed in, therefore it has to employ a nature-mimicking locomotion modality. The project is run by a team of eight students in their third year of bachelor at MAVT/ITET at ETH Zürich. The team is managed by team from the Soft Robotics Lab. The target date for a successful research demonstration is end of May 2023. The project is split into three work packages: 1) design a robotic fish for underwater sampling; 2) manufacture several robotic prototypes; and 3) provide the system with Autonomy and data collection capability. If you like to learn more about this project, please email Prof. Robert Katzschmann (rkk@ethz.ch). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basics of control theory, machine design, and dynamics. Previous exposure to mechatronics or robotic systems will also be helpful. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0073-30L | AirX ![]() Does not take place this semester. This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | M. Zeilinger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This Focus-Project is supervised by the following lecturers: Siegwart, R., ASL Haas, R., ASL Beardsley P., Disney Research Zurich | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0073-40L | Magnetic Monkey ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | M. Hutter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0073-50L | MetaSuit ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | R. Katzschmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop soft artificial muscles and integrate these into a full-body suit for immersive experiences. The suit maps the pose and movement of the human body into virtual or augmented reality. The students learn to work in teams, structure problems, identify solutions, perform system analysis, and present. They have access to rapid prototyping facilities and the latest engineering tools. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | In this focus project, students will develop the platform MetaSuit. Together with their team, they design, build, and test a wearable suit that maps the pose and movement of the human body into a virtual reality (VR) or augmented reality (AR) space. MetaSuit envisions the integration of soft artificial muscles into a full-body suit for immersive experiences. As core enabling technology will serve hydraulically amplified electrostatic actuators that are used both for proprioception and actuation in this project. This technology fuses thin dielectric films together to deformable pouches, injects the formed pouches with dielectric oil, and coats them with flexible electrodes. Applying low currents at high voltages actuates these capacitors by having the electrodes zip together and pushing the liquid into a sub-portion of the deformable pouch. The key idea here is to read out the zipped state of these capacitive-type actuators and therefore make them sensors. The project’s main objective is to create a soft, light, and natural feeling suit that allows users to immerse into a target environment where the user can smoothly move and interact with objects and other users. Such target environments can range from dangerous environments that have to be cleaned up to virtual meeting places that enable learning and training. The project is led by a team of eight undergraduate researchers that are in their 3rd year of bachelor studies at ETH Zurich. Team members have a background in computer science and mechanical/electrical engineering. The supervision and management of the team is provided by the Soft Robotics Lab. The target date for a successful research demonstration is end of May 2023. If you like to learn more about this project, please email Prof. Robert Katzschmann (rkk@ethz.ch). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basics of control theory, machine design, and dynamics. Previous exposure to mechatronics or robotic systems will also be helpful. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0075-10L | e‐Sling Hydrogen Powertrain ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | K. Wegener | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0075-20L | Formula Student Electric ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | D. Mohr | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0075-30L | eXact - Intelligent Full Electric Excavator ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | A. Kunz | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0076-10L | αCentauri ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | P. Jenny | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0076-20L | H2Go ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | K. Wegener | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0076-30L | ARIS - Liquid Rocket Engine ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | M. Bambach | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0077-10L | byPulse ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus-Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | M. Meboldt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0077-20L | SONANO - Optoacoustic Contrast Agents ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | I. Herrmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0079-10L | Multidrone ![]() Does not take place this semester. This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | P. Ermanni | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0079-20L | Retex - Textile Recycling ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | P. Ermanni | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0079-30L | Swissloop ‐ Scaling to Reality ![]() This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | D. Kochmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0079-40L | Swissloop Tunneling ![]() Does not take place this semester. This course is part of a one-year course. The 14 credit points will be issued at the end of FS2023 with new enrolling for the same Focus-Project in FS2023. For MAVT BSc and ITET BSc only. Prerequisites for the focus projects: a. Basis examination successfully passed b. Block 1 and 2 successfully passed For enrollment, please contact the D-MAVT Student Administration. | W | 0 credits | 15A | L. De Lorenzis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0079-99L | Vacuum Transport Seminar: Insights into Hyperloop Research ![]() | E- | 0 credits | 1S | D. Kochmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The Vacuum Transport Seminar series enters its third round following the successful editions in spring and autumn semesters. It is held online via Zoom and offered internationally across a number of European Universities.The seminar was founded and is held by Swissloop and the EuroTube Foundation, and partnered by other European institutes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Students present their work in Hyperloop research. Additionally, industry experts contribute insight talks. The seminar is open to all students, everyone is welcome to join join at any of the dates. About the seminar’s background: Swissloop, the Hyperloop Team based at ETH Zürich, is pursuing long-term support for research and education in vacuum transport. In addition to the active team constructing and building a Hyperloop pod every year, various research projects at ETH are pursued in cooperation with EuroTube. The EuroTube Foundation accelerates the development of sustainable vacuum transportation technologies to provide publicly accessible research and testing infrastructures for universities and industry. About Vacuum Transportation: The demand for air transport has more than doubled in the last 20 years and is growing yearly by about 6.5%. Global demand for cargo and passenger transportation can barely be met today – let alone in a sustainable manner. Vacuum transport can replace short to medium distance flights and can significantly reduce CO2 emissions. The market of high-speed transportation is a global megatrend set to affect our lives in years to come. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0761-00L | Practice Course Product Development ![]() Only students for focus projects. 2 up to 3 students per focus project. | W | 1 credit | 1G | M. Meboldt, C. R. Dietzsch, C. Schorno, M. Schütz | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides comprehensive input to ongoing focus project teams in the areas of project management, communication and presentation, as well as dealing with the media, coaches and patents and safety issues. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Participants will receive tips, hints and background information from experienced tutors appliccable to current projects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Project Management - Creating a solid project base - Project planning and controlling - Product validation and testing - Problem solving cycle and decicion taking transparent for others Communication - Communication within the team and with coaches - Public Relations in a Nutshell - How to aquire and manage suppliers and sponsors - Transfer of technical drawings to suppliers - Technical repots - Review presentations Handling of and guidance to - Expectation management and dealing with conflicts - Burnout prevention, time management, work disturbances - Safety issues - Issues regardring patents | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and documentation will be electronically available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | - for students only participating in a Focus Project in the same semester - the exact schedule will be communicated during the course - it is expected, that every team is visiting each leacture with typically at least 2 team members | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0763-00L | Practice Course to Focus Projects on CAD and CAE Based on Siemens NX ![]() - Max. 3 Students by one Focus Team allowed - Course is only useful and recommended for students using CAD and CAE Tools for their duty within the project itself - Feel free to contact us, if there are open questions: martin.schuetz@mavt.ethz.ch | W | 3 credits | 3G | J.‑L. Emery, M. Schütz | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides comprehensive input to ongoing Focus Projects teams in the areas of CAD and CAE mit Siemens NX. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Participants will receive tips, hints and background information from experienced tutors applicable to current projects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | CAD with Siemens NX - 2 day of intensive training (2x4h, 1x8L) CAE mit Siemens NX - 2 separate days of intensive training (2x8L) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and documentation will be electronically available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | - only for students participating in a Focus Project in the same semester - use of Siemens NX CAD/CAE in the corresponding Focus Project required | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Focus Coordinator: Prof. Christoph Müller In order to achieve the required 20 credit points for the Focus Specialization Energy, Flows and Processes you need to choose at least 2 core courses (W+) (HS/FS) and at least 2 of the elective courses (HS/FS), according to the presentation of the Focus Specialisation (see Link). One course can be selected among all the courses offered by D-MAVT (Bachelors and Masters). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0123-00L | Experimental Methods for Engineers | W+ | 4 credits | 2V + 2U | D. J. Norris, F. Coletti, M. Lukatskaya, A. Manera, G. Nagamine Gomez, B. Schuermans, O. Supponen, M. Tibbitt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course presents an overview of measurement tasks in engineering environments. Different concepts for the acquisition and processing of typical measurement quantities are introduced. Following an initial in-class introduction, laboratory exercises from different application areas (especially in thermofluidics, energy, and process engineering) are attended by students in small groups. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Introduction to various aspects of measurement techniques, with particular emphasis on thermo-fluidic, energy, and process-engineering applications. Understanding of various sensing technologies and analysis procedures. Exposure to typical experiments, diagnostics hardware, data acquisition, and processing. Study of applications in the laboratory. Fundamentals of scientific documentation and reporting. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | In-class introduction to representative measurement techniques in the research areas of the participating institutes (fluid dynamics, energy technology, process engineering) Student participation in 8-10 laboratory experiments (study groups of 3-5 students, dependent on the number of course participants and available experiments) Lab reports for all attended experiments have to be submitted by the study groups. A final exam evaluates the acquired knowledge individually. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Presentations, handouts, and instructions are provided for each experiment. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Holman, J.P. "Experimental Methods for Engineers," McGraw-Hill 2001, ISBN 0-07-366055-8 Morris, A.S. & Langari, R. "Measurement and Instrumentation," Elsevier 2011, ISBN 0-12-381960-4 Eckelmann, H. "Einführung in die Strömungsmesstechnik," Teubner 1997, ISBN 3-519-02379-2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic understanding in the following areas: - fluid mechanics, thermodynamics, heat and mass transfer - electrical engineering / electronics - numerical data analysis and processing (e.g. using MATLAB) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0293-00L | Combustion and Reactive Processes in Energy and Materials Technology | W+ | 4 credits | 2V + 1U + 2A | N. Noiray, F. Ernst, C. E. Frouzakis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course will provide an introduction to the fundamentals and the applications of combustion in energy conversion and nanoparticles synthesis. The content is highly relevant for technologies which cannot be electrified such as long distance aviation and shipping, and which will more and more rely on carbon-neutral synthetic fuels. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The main learning objectives of this course are: 1. Understand the thermodynamic, fluid-dynamic and chemical kinetics fundamentals of combustion processes. 2. Predict relevant parameters for combustion systems, such as laminar and turbulent flame speeds, adiabatic flame temperature or quenching distance. 3. Understand the causal relations of relevant combustion parameters such as the pressure influence on the laminar flame speed. 4. Analyze the challenges of developing sustainable combustion technologies based on carbon-neutral synthetic fuels. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Reaction kinetics, fuel oxidation mechanisms, premixed and diffusion laminar flames, two-phase-flows, turbulence and turbulent combustion, pollutant formation, development of sustainable combustion technologies for power generation, shipping and aviation. Synthesis of materials in flame processes: particles, pigments and nanoparticles. Fundamentals of design and optimization of flame reactors, effect of reactant mixing on product characteristics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | No script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed: J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. Teaching language, assignments and lecture slides in English | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. I. Glassman, Combustion, 3rd edition, Academic Press, 1996. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0221-00L | Introduction to Modeling and Optimization of Sustainable Energy Systems | W | 4 credits | 4G | G. Sansavini, A. Bardow | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces the fundamentals of energy system modeling for the analysis and the optimization of the energy system design and operations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | At the end of this course, students will be able to: - define and quantify the key performance indicators of sustainable energy systems; - select and apply appropriate models for conversion, storage and transport of energy; - develop mathematical models for the analysis, design and operations of multi-energy systems and solve them with appropriate mathematical tools; - select and apply methodologies for the uncertainty analysis on energy systems models; - apply the acquired knowledge to tackle the challenges of the energy transition. In the course "Introduction to Modeling and Optimization of Sustainable Energy Systems", the competencies of process understanding, system understanding, modeling, concept development, data analysis & interpretation and measurement methods are taught, applied and examined. Programming is applied. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The global energy transition; Key performance indicators of sustainable energy systems; Optimization models; Heat integration and heat exchanger networks; Life-cycle assessment; Models for conversion, storage and transport technologies; Multi-energy systems; Design, operations and analysis of energy systems; Uncertainties in energy system modeling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides and supplementary documentation will be available online. Reference to appropriate book chapters and scientific papers will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0109-00L | Turbulent Flows | W | 4 credits | 2V + 1U | P. Jenny | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Contents - Laminar and turbulent flows, instability and origin of turbulence - Statistical description: averaging, turbulent energy, dissipation, closure problem - Scalings. Homogeneous isotropic turbulence, correlations, Fourier representation, energy spectrum - Free turbulence: wake, jet, mixing layer - Wall turbulence: Channel and boundary layer - Computation and modelling of turbulent flows | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Basic physical phenomena of turbulent flows, quantitative and statistical description, basic and averaged equations, principles of turbulent flow computation and elements of turbulence modelling | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Properties of laminar, transitional and turbulent flows. - Origin and control of turbulence. Instability and transition. - Statistical description, averaging, equations for mean and fluctuating quantities, closure problem. - Scalings, homogeneous isotropic turbulence, energy spectrum. - Turbulent free shear flows. Jet, wake, mixing layer. - Wall-bounded turbulent flows. - Turbulent flow computation and modeling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes are available | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | S.B. Pope, Turbulent Flows, Cambridge University Press, 2000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0913-00L | Introduction to Photonics | W | 4 credits | 2V + 2U | R. Quidant, J. Ortega Arroyo | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Photonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practise. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...). Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | I- BASICS OF WAVE THEORY 1) General concepts 2) Differential wave equation 3) Wavefront 4) Plane waves and Fourier decomposition of optical fields 5) Spherical waves and Huygens-Fresnel principle II- ELECTROMAGNETIC WAVES 1) Maxwell equations 2) Wave equation for EM waves 3) Dielectric permittivity 4) Refractive index 5) Nonlinear optics 6) Polarisation and polarisation control III- PROPAGATION OF LIGHT 1) Waves at an interface 2) The Fresnel equations 3) Total internal reflection 4) Evanescent waves 5) Dispersion diagram IV- INTERFERENCES 1) General considerations 2) Temporal and spatial coherence 3) The Young double slit experiment 4) Diffraction gratings 5) The Michelson interferometer 6) Multi-wave interference 7) Antireflecting coating and interference filters 8) Optical holography V- LIGHT MANIPULATION 1) Optical waveguides 2) Photonic crystals 3) Metamaterials and metasurfaces 4) Optical cavities VI- INTRODUCTION TO OPTICAL MICROSCOPY 1) Basic concepts 2) Direct and Fourier imaging 3) Image formation 4) Fluorescence microscopy 5) Scattering-based microscopy 6) Digital holography 7) Computational imaging VII- OPTICAL FORCES AND OPTICAL TWEEZERS 1) History of optical forces 2) Theory of optical trapping 3) Atom cooling 4) Optomechanics 5) Plasmonic trapping 6) Applications of optical tweezers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Class notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Optics (Hecht) - Pearson | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Physics I, Physics II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0917-00L | Mass Transfer | W | 4 credits | 2V + 2U | S. E. Pratsinis, V. Mavrantzas, C.‑J. Shih | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Cussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0973-00L | Introduction to Process Engineering | W | 4 credits | 2V + 2U | F. Donat, C. Müller | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Overview of process engineering; fundamentals of process engineering; processes and balances; overview of thermal separation processes and multiphase systems; overview of mechanical separation processes and granular systems; introduction into reaction engineering, reactors and residence times. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | We teach the fundamentals of process engineering using practical examples as well as concrete process engineering problems in the areas of process control and balancing, thermal separation processes, mechanical separation processes and reaction engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Overview of process engineering; fundamentals of process engineering; processes and balances; overview of thermal separation processes and multiphase systems; overview of mechanical separation processes and granular systems; introduction into reaction engineering, reactors and residence times. In addition to teaching basic theoretical knowledge, the focus is on solving typical problems in various subdisciplines of process engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script is provided (German language). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Further literature will be announced during the course. For the successful completion of the course, the lecture notes, the slides of the lecture and the exercise materials are sufficient. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Focus Coordinator: Prof. Marco Hutter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0509-00L | Acoustics in Fluid Media: From Robotics to Additive Manufacturing Note: The previous course title until HS21 "Microscale Acoustofluidics" | W | 4 credits | 3G | D. Ahmed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course will provide you with the fundamentals of the new and exciting field of ultrasound-based microrobots to treat various diseases. Furthermore, we will explore how ultrasound can be used in additive manufacturing for tissue constructs and robotics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The course is designed to equip students with skills in the design and development of ultrasound-based manipulation devices and microrobots for applications in medicine and additive manufacturing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Yes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions ( both compulsary) and hand in homework. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0575-01L | Signals and Systems ![]() | W | 4 credits | 2V + 2U | A. Carron | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Signals arise in most engineering applications. They contain information about the behavior of physical systems. Systems respond to signals and produce other signals. In this course, we explore how signals can be represented and manipulated, and their effects on systems. We further explore how we can discover basic system properties by exciting a system with various types of signals. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Master the basics of signals and systems. Apply this knowledge to problems in the homework assignments and programming exercise. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Discrete-time signals and systems. Fourier- and z-Transforms. Frequency domain characterization of signals and systems. System identification. Time series analysis. Filter design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes available on course website. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Control Systems I is helpful but not required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0601-00L | Theory of Robotics and Mechatronics ![]() Does not take place this semester. | W | 4 credits | 3G | to be announced | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides an introduction and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Robotics is often viewed from three perspectives: perception (sensing), manipulation (affecting changes in the world), and cognition (intelligence). Robotic systems integrate aspects of all three of these areas. This course provides an introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | An introduction to the theory of robotics, and covers the fundamentals of the field, including rigid motions, homogeneous transformations, forward and inverse kinematics of multiple degree of freedom manipulators, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0604-00L | Microrobotics ![]() | W | 4 credits | 3G | B. Nelson | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Main topics of the course include: - Scaling laws at micro/nano scales - Electrostatics - Electromagnetism - Low Reynolds number flows - Observation tools - Materials and fabrication methods - Applications of biomedical microrobots | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The lecture will be taught in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0621-00L | Microsystems I: Process Technology and Integration | W | 6 credits | 3V + 3U | M. Haluska, C. Hierold | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students are introduced to the fundamentals of semiconductors, the basics of micromachining and silicon process technology and will learn about the fabrication of microsystems and -devices by a sequence of defined processing steps (process flow). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Students are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of microsystem devices by the combination of unit process steps ( = process flow). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Introduction to microsystems technology (MST) and micro electro mechanical systems (MEMS) - Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition. - Specific microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties. Application of selected technologies will be demonstrated on case studies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts (available online) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - S.M. Sze: Semiconductor Devices, Physics and Technology - W. Menz, J. Mohr, O.Paul: Microsystem Technology - Hong Xiao: Introduction to Semiconductor Manufacturing Technology - M. J. Madou: Fundamentals of Microfabrication and Nanotechnology, 3rd ed. - T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Physics I and II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0640-00L | Studies on Mechatronics ![]() The supervising professors can be selected in myStudies during registration of the course. For exceptions please contact the focus coordinator and info@mavt.ethz.ch. This course is not available to incoming exchange students. | W | 5 credits | 11A | Supervisors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Overview of Mechatronics topics and study subjects. Identification of minimum 10 pertinent refereed articles or works in the literature in consultation with supervisor or instructor. After 4 weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After feedback on the substance and technical writing by the instructor, project commences. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The students are familiar with the challenges of the fascinating and interdisciplinary field of Mechatronics and Mikrosystems. They are introduced in the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The students work independently on a study of selected topics in the field of Mechatronics or Microsystems. They start with a selection of scientific papers to continue literature research. The results (e.g. state-of-the-art, methods) are evaluated with respect to predefined criteria. Then the results are presented in an oral presentation and summarized in a report, which takes the discussion of the presentation into account. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | will be available | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0913-00L | Introduction to Photonics | W | 4 credits | 2V + 2U | R. Quidant, J. Ortega Arroyo | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Photonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practise. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...). Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | I- BASICS OF WAVE THEORY 1) General concepts 2) Differential wave equation 3) Wavefront 4) Plane waves and Fourier decomposition of optical fields 5) Spherical waves and Huygens-Fresnel principle II- ELECTROMAGNETIC WAVES 1) Maxwell equations 2) Wave equation for EM waves 3) Dielectric permittivity 4) Refractive index 5) Nonlinear optics 6) Polarisation and polarisation control III- PROPAGATION OF LIGHT 1) Waves at an interface 2) The Fresnel equations 3) Total internal reflection 4) Evanescent waves 5) Dispersion diagram IV- INTERFERENCES 1) General considerations 2) Temporal and spatial coherence 3) The Young double slit experiment 4) Diffraction gratings 5) The Michelson interferometer 6) Multi-wave interference 7) Antireflecting coating and interference filters 8) Optical holography V- LIGHT MANIPULATION 1) Optical waveguides 2) Photonic crystals 3) Metamaterials and metasurfaces 4) Optical cavities VI- INTRODUCTION TO OPTICAL MICROSCOPY 1) Basic concepts 2) Direct and Fourier imaging 3) Image formation 4) Fluorescence microscopy 5) Scattering-based microscopy 6) Digital holography 7) Computational imaging VII- OPTICAL FORCES AND OPTICAL TWEEZERS 1) History of optical forces 2) Theory of optical trapping 3) Atom cooling 4) Optomechanics 5) Plasmonic trapping 6) Applications of optical tweezers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Class notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Optics (Hecht) - Pearson | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Physics I, Physics II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0113-00L | Power Electronics ![]() | W | 6 credits | 4G | J. W. Kolar | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Fields of application of power electronic converters; basic concept of switch-mode voltage and current conversion; derivation of circuit structures of non-isolated and isolated DC/DC converters, AC/DC- and DC/AC converter structures; analysis procedure and analysis of the operating behaviour and operating range; design criteria and design of main power components. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fields of application and application examples of power electronic converters, basic concept of switch-mode voltage and current conversion, pulse-width modulation (PWM); derivation and operating modes (continuous and discontinuous current mode) of DC/DC converter topologies, buck / boost / buck-boost converter; extension to DC/AC conversion using differences of unipolar output voltages varying over time; single-phase diode rectifier; boost-type PWM rectifier featuring sinusoidal input current; tolerance band AC current control and cascaded output voltage control with inner constant switching frequency current control; local and global averaging of switching frequency discontinuous quantities for calculation of component stresses; three-phase AC/DC conversion, center-tap rectifier with impressed output current, thyristor function, thyristor center-tap and full-bridge converter, rectifier and inverter operation, control angle and recovery time, inverter operation limit; basics of inductors and single-phase transformers, design based on scaling laws; Isolated DCDC converter, flyback and forward converter, single-switch and two-switch circuit; single-phase DC/AC conversion, four-quadrant converter, unipolar and bipolar modulation, fundamental frequency model of AC-side operating behaviour; three-phase DC/AC converter with star-connected three-phase load, zero sequence (common-mode) and current forming differential-mode output voltage components, fundamental frequency modulation and PWM with singe triangular carrier and individual carrier signals of the phases. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and associated exercises including correct answers, simulation program for interactive self-learning including visualization/animation features. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Basic knowledge of electrical engineering / electric circuit analysis and signal theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0124-00L | Embedded Systems ![]() ![]() | W | 6 credits | 4G | M. Magno, L. Thiele | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. The course covers theoretical and practical aspects of embedded system design and includes a series of lab sessions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Understanding specific requirements and problems arising in embedded system applications. Understanding architectures and components, their hardware-software interfaces, the memory architecture, communication between components, embedded operating systems, real-time scheduling theory, shared resources, low-power and low-energy design as well as hardware architecture synthesis. Using the formal models and methods in embedded system design in practical applications using the programming language C, the operating system ThreadX, a commercial embedded system platform and the associated design environment. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | An embedded system is some combination of computer hardware and software, either fixed in capability or programmable, that is designed for a specific function or for specific functions within a larger system. For example, they are part of industrial machines, agricultural and process industry devices, automobiles, medical equipment, cameras, household appliances, airplanes, sensor networks, internet-of-things, as well as mobile devices. The focus of this lecture is on the design of embedded systems using formal models and methods as well as computer-based synthesis methods. Besides, the lecture is complemented by laboratory sessions where students learn to program in C, to base their design on the embedded operating systems ThreadX, to use a commercial embedded system platform including sensors, and to edit/debug via an integrated development environment. Specifically the following topics will be covered in the course: Embedded system architectures and components, hardware-software interfaces and memory architecture, software design methodology, communication, embedded operating systems, real-time scheduling, shared resources, low-power and low-energy design, hardware architecture synthesis. More information is available at https://pbl.ee.ethz.ch/education/embedded-systems.html . | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The following information will be available: Lecture material, publications, exercise sheets and laboratory documentation at https://pbl.ee.ethz.ch/education/embedded-systems.html . | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | P. Marwedel: Embedded System Design, Springer, ISBN 978-3-319-56045-8, 2018. G.C. Buttazzo: Hard Real-Time Computing Systems. Springer Verlag, ISBN 978-1-4614-0676-1, 2011. Edward A. Lee and Sanjit A. Seshia: Introduction to Embedded Systems, A Cyber-Physical Systems Approach, Second Edition, MIT Press, ISBN 978-0-262-53381-2, 2017. M. Wolf: Computers as Components – Principles of Embedded System Design. Morgan Kaufman Publishers, ISBN 978-0-128-05387-4, 2016. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Basic knowledge in computer architectures and programming. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0517-10L | Fundamentals of Electric Machines ![]() | W | 6 credits | 4G | D. Bortis, R. Bosshard | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces to different electric machine concepts and provides a deeper understanding of their detailed operating principles. Different aspects arising in the design of electric machines, like dimensioning of magnetic and electric circuits as well as consideration of mechanical and thermal constraints, are investigated. The exercises are used to consolidate the concepts discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The objective of this course is to convey knowledge on the operating principles of different types of electric machines. Further objectives are to evaluate machine types for given specifications and to acquire the ability to perform a rough design of an electrical machine while considering the versatile aspects with respect to magnetic, electrical, mechanical and thermal limitations. Exercises are used to consolidate the presented theoretical concepts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | ‐ Fundamentals in magnetic circuits and electromechanical energy conversion. ‐ Force and torque calculation. ‐ Operating principles, magnetic and electric modelling and design of different electric machine concepts: DC machine, AC machines (permanent magnet synchronous machine, reluctance machine and induction machine). ‐ Complex space vector notation, rotating coordinate system (dq-transformation). ‐ Loss components in electric machines, scaling laws of electromechanical actuators. ‐ Mechanical and thermal modelling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and associated exercises including correct answers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1504-00L | Physical Human Robot Interaction (pHRI) ![]() | W | 4 credits | 2V + 2U | O. Lambercy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems. By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de- sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to: 1) identify critical human factors in physical human-robot interaction and use these to derive design requirements; 2) compare and select mechatronic components that optimally fulfill the defined design requirements; 3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components into a functional system; 4) design control hardware and software and implement and test human-interactive control strategies on the physical setup; 5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics; 6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits. Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (https://relab.ethz.ch/downloads/open-hardware/haptic-paddle.html), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Will be distributed on Moodle before the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Abbott, J. and Okamura, A. (2005). Effects of position quantization and sampling rate on virtual-wall passivity. Robotics, IEEE Transactions on, 21(5):952 - 964. Adams, R. and Hannaford, B. (1999). Stable haptic interaction with virtual environments. Robotics and Automation, IEEE Transactions on, 15(3):465 - 474. Buerger, S. and Hogan, N. (2007). Complementary stability and loop shaping for improved human-robot interaction. Robotics, IEEE Transactions on, 23(2):232 - 244. Burdea, G. and Brooks, F. (1996). Force and touch feedback for virtual reality. John Wiley & Sons New York NY. Colgate, J. and Brown, J. (1994). Factors affecting the z-width of a haptic display. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, pages 3205 -3210 vol. 4. Diolaiti, N., Niemeyer, G., Barbagli, F., and Salisbury, J. (2006). Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. Robotics, IEEE Transactions on, 22(2):256 - 268. Gillespie, R. and Cutkosky, M. (1996). Stable user-specific haptic rendering of the virtual wall. In Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, volume 58, pages 397 - 406. Hannaford, B. and Ryu, J.-H. (2002). Time-domain passivity control of haptic interfaces. Robotics and Automation, IEEE Transactions on, 18(1):1 - 10. Hashtrudi-Zaad, K. and Salcudean, S. (2001). Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. The International Journal of Robotics Research, 20(6):419. Hayward, V. and Astley, O. (1996). Performance measures for haptic interfaces. In ROBOTICS RESEARCH-INTERNATIONAL SYMPOSIUM, volume 7, pages 195-206. Citeseer. Hayward, V. and Maclean, K. (2007). Do it yourself haptics: part i. Robotics Automation Magazine, IEEE, 14(4):88 - 104. Leskovsky, P., Harders, M., and Szeekely, G. (2006). Assessing the fidelity of haptically rendered deformable objects. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on, pages 19 - 25. MacLean, K. and Hayward, V. (2008). Do it yourself haptics: Part ii [tutorial]. Robotics Automation Magazine, IEEE, 15(1):104 - 119. Mahvash, M. and Hayward, V. (2003). Passivity-based high-fidelity haptic rendering of contact. In Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, volume 3, pages 3722 - 3728. Mehling, J., Colgate, J., and Peshkin, M. (2005). Increasing the impedance range of a haptic display by adding electrical damping. In Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages 257 - 262. Okamura, A., Richard, C., and Cutkosky, M. (2002). Feeling is believing: Using a force-feedback joystick to teach dynamic systems. JOURNAL OF ENGINEERING EDUCATION-WASHINGTON, 91(3):345 - 350. O'Malley, M. and Goldfarb, M. (2004). The effect of virtual surface stiffness on the haptic perception of detail. Mechatronics, IEEE/ASME Transactions on, 9(2):448 - 454. Richard, C. and Cutkosky, M. (2000). The effects of real and computer generated friction on human performance in a targeting task. In Proceedings of the ASME Dynamic Systems and Control Division, volume 69, page 2. Salisbury, K., Conti, F., and Barbagli, F. (2004). Haptic rendering: Introductory concepts. Computer Graphics and Applications, IEEE, 24(2):24 - 32. Weir, D., Colgate, J., and Peshkin, M. (2008). Measuring and increasing z-width with active electrical damping. In Haptic interfaces for virtual environment and teleoperator systems, 2008. haptics 2008. symposium on, pages 169 - 175. Yasrebi, N. and Constantinescu, D. (2008). Extending the z-width of a haptic device using acceleration feedback. Haptics: Perception, Devices and Scenarios, pages 157-162. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Notice: The registration is limited to 26 students There are 4 credit points for this lecture. The lecture will be held in English. The students are expected to have basic control knowledge from previous classes. http://www.relab.ethz.ch/education/courses/phri.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Focus Coordinator: Prof. Christofer Hierold | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0621-00L | Microsystems I: Process Technology and Integration | W+ | 6 credits | 3V + 3U | M. Haluska, C. Hierold | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students are introduced to the fundamentals of semiconductors, the basics of micromachining and silicon process technology and will learn about the fabrication of microsystems and -devices by a sequence of defined processing steps (process flow). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Students are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of microsystem devices by the combination of unit process steps ( = process flow). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Introduction to microsystems technology (MST) and micro electro mechanical systems (MEMS) - Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition. - Specific microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties. Application of selected technologies will be demonstrated on case studies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts (available online) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - S.M. Sze: Semiconductor Devices, Physics and Technology - W. Menz, J. Mohr, O.Paul: Microsystem Technology - Hong Xiao: Introduction to Semiconductor Manufacturing Technology - M. J. Madou: Fundamentals of Microfabrication and Nanotechnology, 3rd ed. - T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Physics I and II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0509-00L | Acoustics in Fluid Media: From Robotics to Additive Manufacturing Note: The previous course title until HS21 "Microscale Acoustofluidics" | W | 4 credits | 3G | D. Ahmed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course will provide you with the fundamentals of the new and exciting field of ultrasound-based microrobots to treat various diseases. Furthermore, we will explore how ultrasound can be used in additive manufacturing for tissue constructs and robotics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The course is designed to equip students with skills in the design and development of ultrasound-based manipulation devices and microrobots for applications in medicine and additive manufacturing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Yes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions ( both compulsary) and hand in homework. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0604-00L | Microrobotics ![]() | W | 4 credits | 3G | B. Nelson | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Main topics of the course include: - Scaling laws at micro/nano scales - Electrostatics - Electromagnetism - Low Reynolds number flows - Observation tools - Materials and fabrication methods - Applications of biomedical microrobots | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The lecture will be taught in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0643-00L | Studies on Micro and Nano Systems This course is not available to incoming exchange students. | W | 5 credits | 11A | Supervisors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The students get familiarized with the challenges of the fascinating and interdisciplinary field of Micro- and Nanosystems. They are introduced to the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The students get familiarized with the challenges of the fascinating and interdisciplinary field of Micro- and Nanosystems. They are introduced to the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Students work independently on a study of selected topics in the field of Micro- and Nanosystems. They start with a selection of scientific papers, and continue with an independent iterature research. The results (e.g. state-of-the-art, methods) are evaluated with respect to predefined criteria. Then the results are presented in an oral presentation and summarized in a report, which takes the discussion of the presentation into account. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature will be provided | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0902-00L | Micro- and Nanoparticle Technology ![]() Number of participants is limited to 20. Additional ones could be enrolled by permission of the lecturer. | W | 6 credits | 2V + 2U | S. E. Pratsinis, V. Mavrantzas, K. Wegner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Particles are everywhere and nano is the new scale in science & engineering as micro was ~200 years ago. For highly motivated students, this exceptionally demanding class gives a flavor of nanotechnology with hands-on student projects on gas-phase particle synthesis & applications capitalizing on particle dynamics (diffusion, coagulation etc.), shape, size distribution and characterization. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | This course aims to familiarize motivated M/BSc students with some of the basic phenomena of particles at the nanoscale, thereby illustrating the links between physics, chemistry, materials science through hands-on experience. Furthermore it aims to give an overview of the field with motivating lectures from industry and academia, including the development of technologies and processes based on particle technology with introduction to design methods of mechanical processes, scale-up laws and optimal use of materials and energy. Most importantly, this course aims to develop the creativity and sharpen the communication skills of motivated students through their individual projects, a PERFECT preparation for the M/BSc thesis (e.g. efficient & critical literature search, effective oral/written project presentations), the future profession itself and even life, in general, are always there! | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course objectives are best met primarily through the individual student projects which may involve experiments, simulations or critical & quantitative reviews of the literature. Projects are conducted individually under the close supervision of MSc, PhD or post-doctoral students. Therein, a 2-page proposal is submitted within the first two semester weeks addressing explicitly, at least, 10 well-selected research articles and thoughtful meetings with the project supervisor. The proposal address 3 basic questions: a) how important is the project; b) what has been done already in that field and c) what will be done by the student. Detailed feedback on each proposal is given by the supervisor, assistant and professor two weeks later. Towards the end of the semester, a 10-minute oral presentation is given by the student followed by 10 minutes Q&A. A 10-page final report is submitted by noon of the last day of the semester. The project supervisor will provide guidance throughout the course. Lectures include some of the following: - Overview & Project Presentation - Particle Size Distribution - Particle Diffusion - Coagulation - Agglomeration & Coalescence - Particle Growth by Condensation - Control of particle size & structure during gas-phase synthesis - Multi-scale design of aerosol synthesis of particles - Particle Characterization - Aerosol manufacture of nanoparticles - Forces acting on Single Particles in a Flow Field - Fixed and Fluidized Beds - Separations of Solid-Liquid & Solid-Gas systems - Emulsions/droplet formation/microfluidics - Gas Sensors - Coaching for proposal & report writing as well as oral presentations | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Smoke, Dust and Haze, S.K. Friedlander, Oxford, 2nd ed., 2000 Aerosol Technology, W. Hinds, Wiley, 2nd Edition, 1999. Aerosol Processing of Materials, T. Kodas M. Hampden-Smith, Wiley, 1999. History of the Manufacture of Fine Particles in High-Temperature Aerosol Reactors in Aerosol Science and Technology: History and Reviews, ed. D.S. Ensor & K.N. Lohr, RTI Press, Ch. 18, pp. 475-507, 2011. Flame aerosol synthesis of smart nanostructured materials, R. Strobel, S. E. Pratsinis, J. Mater. Chem., 17, 4743-4756 (2007). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | FluidMechanik I, Thermodynamik I&II & "clean" 5th semester BSc student standing in D-MAVT (no block 1 or 2 obligations). Students attending this course are expected to allocate sufficient additional time within their weekly schedule to successfully conduct their project. As exceptional effort will be required! Having seen "Chasing Mavericks" (2012) by Apted & Henson, "Unbroken" (2014) by Angelina Jolie and, in particular, "The Salt of the Earth" (2014) by Wim Wenders might be helpful and even motivating. These movies show how methodic effort can bring superior and truly unexpected results (e.g. stay under water for 5 minutes to overcome the fear of riding huge waves or merciless Olympic athlete training that help survive 45 days on a raft in Pacific Ocean followed by 2 years in a Japanese POW camp during WWII). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0913-00L | Introduction to Photonics | W | 4 credits | 2V + 2U | R. Quidant, J. Ortega Arroyo | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Photonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practise. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...). Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | I- BASICS OF WAVE THEORY 1) General concepts 2) Differential wave equation 3) Wavefront 4) Plane waves and Fourier decomposition of optical fields 5) Spherical waves and Huygens-Fresnel principle II- ELECTROMAGNETIC WAVES 1) Maxwell equations 2) Wave equation for EM waves 3) Dielectric permittivity 4) Refractive index 5) Nonlinear optics 6) Polarisation and polarisation control III- PROPAGATION OF LIGHT 1) Waves at an interface 2) The Fresnel equations 3) Total internal reflection 4) Evanescent waves 5) Dispersion diagram IV- INTERFERENCES 1) General considerations 2) Temporal and spatial coherence 3) The Young double slit experiment 4) Diffraction gratings 5) The Michelson interferometer 6) Multi-wave interference 7) Antireflecting coating and interference filters 8) Optical holography V- LIGHT MANIPULATION 1) Optical waveguides 2) Photonic crystals 3) Metamaterials and metasurfaces 4) Optical cavities VI- INTRODUCTION TO OPTICAL MICROSCOPY 1) Basic concepts 2) Direct and Fourier imaging 3) Image formation 4) Fluorescence microscopy 5) Scattering-based microscopy 6) Digital holography 7) Computational imaging VII- OPTICAL FORCES AND OPTICAL TWEEZERS 1) History of optical forces 2) Theory of optical trapping 3) Atom cooling 4) Optomechanics 5) Plasmonic trapping 6) Applications of optical tweezers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Class notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Optics (Hecht) - Pearson | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Physics I, Physics II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0135-00L | Additional Case for the Focus Specialization Exclusive for D-MAVT Bachelor's students in Focus Specialization. For enrollment, please contact the D-MAVT Student Administration. | W | 1 credit | 2A | Professors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Independent studies on a defined field within the selected Focus Specialization. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Independent studies on a defined field within the selected Focus Specialization. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Focus Coordinator: Prof. Konrad Wegener To achieve the required 20 credit points for the focus specialization you need to pass at least 2 core courses (W+ in HS/FS). The other 12 credit points can be achieved from the elective courses (in HS/FS). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0705-00L | Manufacturing I | W+ | 4 credits | 2V + 2U | K. Wegener, M. Wiessner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Deeper insight in manufacturing processes: drilling, milling, grinding, honing, lapping, electro erosion and electrochemical machining. Stability of processes, process chains and process choice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Deepened discussion on the machining processes and their optimisation. Outlook on additional areas such as NC-Technique, dynamics of processes and machines, chatter as well as process monitoring. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Deepened insight in the machining processes and their optimisation, chip removal by undefined cutting edge such as grinding, honing and lapping, machining processes without cutting edges such as EDM, ECM, outlook on additional areas as NC-technique, machine- and process dynamics including chatter and process monitoring | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Recommendation: Lecture 151-0700-00L Manufacturing elective course in the 4th semester. Language: Help for English speaking students on request as well as english translations of the slides shown. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0733-00L | Basics and Processes of Metal Forming Note: The previous course title until HS21 "Forming Technology III - Forming Processes". | W+ | 4 credits | 2V + 2U | M. Bambach | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture teaches on the basic knowledge of major processes in sheet metal, tube and bulk metal forming technologies. In particular it focuses on fundamental computation methods, which allow a fast assessment of process behaviour and a rough layout. Process-specific states of stress and deformation are analysed and process limits are identified. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Acquaintance with forming processes. Determination of forming processes. Interpretation of forming manufacturing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The study of metal working processes: sheet metal forming, folding die cutting, cold bulk metal forming, ro extrusion, plunging, open die forging, drop forging, milling; active principle; elementary methods to estimate stress and strain; fundamentals of process design; manufacturing limits and machining accuracy; tools and operation; machinery and machine usage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | ja | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0703-00L | Operational Simulation of Production Lines | W | 4 credits | 2V + 1U | P. Acél | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The students learn the application of the event-driven and computer-based simulation for layout and operational improvement of production facilities by means of practical examples. The simulation provides an essential basis for digital twins in Industry 4.0. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The students learn the right use of (Who? When? How?) of the event-driven and computer-based simulation in the illustration of the operating procedures and the production facilities. The simulation is an important basis for creating a digital twin in the context of Industry 4.0. Operating simulation in the productions, logistic and scheduling will be shown by means of practical examples. The students should make their first experiences in the use of computer-based simulation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Application and application areas of the event-driven simulation - Simulation in the context of Industry 4.0 (digital twin) - Exemplary application of a software tool (Technomatrix-Simulation-Software) - Internal organisation and functionality of simulation tools - Procedure for application: optimizing, experimental design planning, analysis, data preparation - Controlling philosophies, emergency concepts, production in sequence, line production, rescheduling - Application on the facilities projecting The knowledge is enhanced by practice-oriented exercises and an excursion. A guest speaker will present a practical example. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Will be sent by email before the lecture (pdf). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | A bibliography will be given during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Recommended for all Bachelor-Students in the 5th semester and Master-Students in the 7th semester (MAVT, MTEC). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0717-00L | Mechanical Production: Assembly, Joining and Coating Technology | W | 4 credits | 2V + 1U | K. Wegener, V. H. Derflinger, P. Jousset | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Understanding of the complexity of the assembly process as well as its meaning as success and cost factor. The assembly with the different aspects of adding, moving, adjusting, controling parts etc.. Adding techniques; solvable and unsolvable connections. Assembly plants. Coating techniques and their tasks, in particular corrosion protection. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | To understand assembly in its full complexity and its paramount importance regarding cost and financial success. An introduction into a choice of selected joining and coating techniques. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Assembly as combination of several classes of action like, e.g., joining, handling, fine adjustments, etc. Techniques for joining objects temporarily or permanently. Assembly systems. Coating processes and their specific applications, with particular emphasis on corrosion protection. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Recommended to the focus production engineering. Majority of lecturers from the industry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0719-00L | Quality of Machine Tools - Dynamics and Metrology at Micro and Submicro Level | W | 4 credits | 2V + 1U | A. Günther, D. Spescha | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course "Machine tool metrolgy" deals with the principal design of machine tools, their spindles and linear axes, with possible geometric, kinematic, thermal and dynamic errrors of machine tools and testing these errors, with the influence of errors on the workpiece (error budgeting), with testing of drives and numerical control, as well as with checking the machine tool capability. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Knowledge of - principal design of machine tools - errors of linear and rotational axes and of machine tools, - influence of errors on the workpiece (error budgeting) - dynamics of mechanical systems - measurement data acquisition / digital signal analysis - experimental modal analysis - geometric, kinematic, thermal, dynamic testing of machine tools - test uncertainty - machine tool capability | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Metrology for production, machine tool metrology - basics, like principal machine tool design and machine tool coordinate system - principal design and errors of linear and rotaional axes - error budgeting, influence of machine errors on the workpiece - geometric and kinematic testing of machine tools - reversal measurement techniques, multi-dimensional machine tool metrology - thermal influences on machine tools and testing these influences - test uncertainty, simulation - basic concepts of dynamics of mechanical systems and vibration theory - sensors and excitation systems - mode fitting, experimental modal analysis - testing of drives and numerical control - machine tool capability | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Documents are provided during the course. English handouts available on request. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Exercises in the laboratories and with the machine tools of the institute for machine tools and manufacturing (IWF) provide the practical background for this course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0723-00L | Manufacturing of Electronic Devices ![]() | W | 4 credits | 3G | A. Kunz, R.‑D. Moryson, F. Reichert | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture follows the value added process sequence of electric and electronic components. It contains: Development of electric and electronic circuits, design of electronic circuits on printed circuit boards as well as in hybrid technology, integrated test technology, planning of production lines, production of highly integrated electronic on a wafer as well as recycling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Knowledge about the value added process sequence for electronics manufacturing, planning of electric and electronic product as well as their production, planning of production lines, value added process sequence for photovoltaics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Nothing works without electronics! Typical products in mechanical engineering such as machine tools, as well as any kind of vehicle contain a significant amount of electric or electronic components of more than 60%. Thus, it is important to master the value added process sequence for electric and electronic components. The lecture starts with a brief introduction of electronic components and the planning of integrated circuits. Next, an overview will be provided about electronic functional units assembled from these electronic components, on printed circuit boards as well as in hybrid technology. Value added process steps are shown as well as their quality check and their combination for planning a complete manufacturing line. The lecture further describes the manufacturing of integrated circuits, starting from the wafer via the structuring and bonding to the packaging. As an example, the manufacturing of micro-electromechanic and electro-optical systems and actuators is described. Due to similar processes in the electronic production, the value added process sequence for photovoltaics will described too. The lecture concludes with an excursion to a large manufacturing company. Here, students can the see the application and realization of the manufacturing of electric and electronic devices. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes are handed out during the individual lessons. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The lecture is partly given by experts from industry. It is supplemented by an excursion to one of the industry partners. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0833-00L | Applied Finite Element Analysis | W | 4 credits | 2V + 2U | B. Berisha, D. Mohr | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Most problems in engineering are of nonlinear nature. The nonlinearities are caused basically due to the nonlinear material behavior, contact conditions and instability of structures. The principles of the nonlinear Finite-Element-Method (FEM) will be introduced for treating such problems. The finite element program ABAQUS is introduced to investigate real engineering problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The goal of the lecture is to provide the students with the fundamentals of the non linear Finite Element Method (FEM). The lecture focuses on the principles of the nonlinear Finite-Element-Method based on explicit and implicit formulations. Typical applications of the nonlinear Finite-Element-Methods are simulations of: - Crash - Collapse of structures - Material behavior (metals and rubber) - General forming processes Special attention will be paid to the modeling of the nonlinear material behavior, thermo-mechanical processes and processes with large plastic deformations. The ability to independently create a virtual model which describes the complex non linear systems will be acquired through accompanying exercises. These will include the Matlab programming of important model components such as constitutive equations. The FEM Program ABAQUS will be introduced to investigate real engineering problems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - introduction into FEM - Fundamentals of continuum mechanics to characterize large plastic deformations - Elasto-plastic material models - Lagrange and Euler approaches - FEM implementation of constitutive equations - Element formulations - Implicit and explicit FEM methods - FEM formulations of coupled thermo-mechanical problems - Modeling of tool contact and the influence of friction - Solvers and convergence - Instability problems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Bathe, K. J., Finite-Element-Procedures, Prentice-Hall, 1996 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Focus Coordinator: Prof. Bradley Nelson | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0509-00L | Acoustics in Fluid Media: From Robotics to Additive Manufacturing Note: The previous course title until HS21 "Microscale Acoustofluidics" | W | 4 credits | 3G | D. Ahmed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course will provide you with the fundamentals of the new and exciting field of ultrasound-based microrobots to treat various diseases. Furthermore, we will explore how ultrasound can be used in additive manufacturing for tissue constructs and robotics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The course is designed to equip students with skills in the design and development of ultrasound-based manipulation devices and microrobots for applications in medicine and additive manufacturing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Yes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions ( both compulsary) and hand in homework. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0524-00L | Continuum Mechanics I | W | 4 credits | 2V + 1U | A. E. Ehret | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture deals with constitutive models that are relevant for the design and analysis of structures. These include anisotropic linear elasticity, linear viscoelasticity, plasticity and viscoplasticity. The basic concepts of homogenization and laminate theory are introduced. Theoretical models are complemented by examples of engineering applications and experiments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Basic theories for solving continuum mechanics problems of engineering applications, with particular focus on constitutive models. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Anisotropic elasticity, Linear elastic and linear viscous material behavior, Viscoelasticity, Micro-macro modelling, Laminate theory, Plasticity, Viscoplasticity, Examples of engineering applications, Comparison with experiments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0604-00L | Microrobotics ![]() | W | 4 credits | 3G | B. Nelson | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Main topics of the course include: - Scaling laws at micro/nano scales - Electrostatics - Electromagnetism - Low Reynolds number flows - Observation tools - Materials and fabrication methods - Applications of biomedical microrobots | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The lecture will be taught in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0621-00L | Microsystems I: Process Technology and Integration | W | 6 credits | 3V + 3U | M. Haluska, C. Hierold | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students are introduced to the fundamentals of semiconductors, the basics of micromachining and silicon process technology and will learn about the fabrication of microsystems and -devices by a sequence of defined processing steps (process flow). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Students are introduced to the basics of micromachining and silicon process technology and will understand the fabrication of microsystem devices by the combination of unit process steps ( = process flow). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Introduction to microsystems technology (MST) and micro electro mechanical systems (MEMS) - Basic silicon technologies: Thermal oxidation, photolithography and etching, diffusion and ion implantation, thin film deposition. - Specific microsystems technologies: Bulk and surface micromachining, dry and wet etching, isotropic and anisotropic etching, beam and membrane formation, wafer bonding, thin film mechanical properties. Application of selected technologies will be demonstrated on case studies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts (available online) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - S.M. Sze: Semiconductor Devices, Physics and Technology - W. Menz, J. Mohr, O.Paul: Microsystem Technology - Hong Xiao: Introduction to Semiconductor Manufacturing Technology - M. J. Madou: Fundamentals of Microfabrication and Nanotechnology, 3rd ed. - T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Physics I and II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0629-00L | Studies on Engineering for Health ![]() The student is responsible to find a project offered and supervised by ETH Professor in the area of Engineering for Health. Once received the approval of the ETH professor the student should forward the approval and the content of the project to the Student Administration info@mavt.ethz.ch for the enrolment. This course is not available to incoming exchange students. | W | 5 credits | 11A | Supervisors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Overview of Engineering for Health topics. Identification of minimum 10 pertinent refereed articles or works in the literature in consultation with supervisor or instructor. After 4 weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After feedback on the substance and technical writing by the instructor, project commences. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The students are familiar with the challenges of the fascinating and interdisciplinary field of Engineering for Health. They are introduced in the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The students work independently on a study of selected topics in the field of Studies on Engineering for Health. They start with a selection of scientific papers to continue literature research. The results (e.g. state-of-the-art, methods) are evaluated with respect to predefined criteria. Then the results are presented in an oral presentation and summarized in a report, which takes the discussion of the presentation into account. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Will be available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-8101-00L | International Engineering: from Hubris to Hope ![]() | W | 4 credits | 3G | E. Tilley, M. Kalina | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Since Europe surrendered their colonial assets, engineers from rich countries have returned to the African continent to address the real and perceived ills that they felt technology could solve. And yet, 70 years on, the promise of technology has largely failed to deliver widespread, substantive improvements in the quality of life. Why? | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | This course is meant for engineers who are interested in pursuing an ethical and relevant career internationally, and who are willing to examine the complex role that well-meaning foreigners have played and continue to play in the disappointing health outcomes that characterize much of the African continent. After completing the course, participants will be able to • critique the jargon and terms used by the international community, i.e. “development”, “aid”, “cooperation”, “assistance” “third world” “developing” “global south” “low and middle-income” and justify their own chosen terminology • recognize the role of racism and white-supremacy in the development of the Aid industry • understand the political, financial, and cultural reasons why technology and infrastructure have historically failed • Debate the merits of international engineering in popular culture and media • Propose improved SDG indicators that address current shortcomings • Compare the engineering curricula of different countries to identify relative strengths and shortcomings • Explain the inherent biases of academic publishing and its impact on engineering failure • Analyse linkages between the rise of philanthropy and strategic priority areas • Recommend equitable, just funding models to achieve more sustainable outcomes • Formulate a vision for the international engineer of the future | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Role of international engineering during colonialism Transition of international engineering following colonialism White saviourism and racism in international engineering International engineering in popular culture The missing role of Engineering Education Biases academic publishing The emerging role in Global Philanthropy The paradox of International funding | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | McGoey, L. (2015). No such thing as a free gift: The Gates Foundation and the price of philanthropy. Verso Books. Moyo, D. (2009). Dead aid: Why aid is not working and how there is a better way for Africa. Macmillan. Munk, N. (2013). The idealist: Jeffrey Sachs and the quest to end poverty. Signal. Rodney, W. (2018). How europe underdeveloped africa. Verso Trade. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0385-10L | Biomedical Imaging | W | 6 credits | 5G | S. Kozerke, K. P. Prüssmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to diagnostic medical imaging based on electromagnetic and acoustic fields including X-ray planar and tomographic imaging, radio-tracer based nuclear imaging techniques, magnetic resonance imaging and ultrasound-based procedures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Upon completion of the course students are able to: • Explain the physical and mathematical foundations of diagnostic medical imaging systems • Characterize system performance based on signal-to-noise ratio, contrast-to-noise ratio and transfer function • Design a basic diagnostic imaging system chain including data acquisition and data reconstruction • Identify advantages and limitations of different imaging methods in relation to medical diagnostic applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | • Introduction (intro, overview, history) • Signal theory and processing (foundations, transforms, filtering, signal-to-noise ratio) • X-rays (production, tissue interaction, contrast, modular transfer function) • X-rays (resolution, detection, digital subtraction angiography, Radon transform) • X-rays (filtered back-projection, spiral computed tomography, image quality, dose) • Nuclear imaging (radioactive tracer, collimation, point spread function, SPECT/PET) • Nuclear imaging (detection principles, image reconstruction, kinetic modelling) • Magnetic Resonance (magnetic moment, spin transitions, excitation, relaxation, detection) • Magnetic Resonance (plane wave encoding, Fourier reconstruction, pulse sequences) • Magnetic Resonance (contrast mechanisms, gradient- and spin-echo, applications) • Ultrasound (mechanical wave generation, propagation in tissue, reflection, transmission) • Ultrasound (spatial and temporal resolution, phased arrays) • Ultrasound (Doppler shift, implementations, applications) • Summary, example exam questions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Analysis, Linear algebra, Physics, Basics of signal theory, Basic skills in Matlab/Python programming | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0393-10L | Bioelectronics and Biosensors ![]() | W | 6 credits | 2V + 2U | J. Vörös, M. F. Yanik | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course introduces bioelectricity and the sensing concepts that enable obtaining information about neurons and their networks. The sources of electrical fields and currents in the context of biological systems are discussed. The fundamental concepts and challenges of measuring bioelectronic signals and the basic concepts to record optogenetically modified organisms are introduced. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | During this course the students will: - learn the basic concepts in bioelectronics including the sources of bioelectronic signals and the methods to measure them - be able to solve typical problems in bioelectronics - learn about the remaining challenges in this field | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Lecture topics: 1. Introduction Sources of bioelectronic signals 2. Membrane and Transport 3-4. Action potential and Hodgkin-Huxley Measuring bioelectronic signals 5. Detection and Noise 6. Measuring currents in solutions, nanopore sensing and patch clamp pipettes 7. Measuring potentials in solution and core conductance model 8. Measuring electronic signals with wearable electronics, ECG, EEG 9. Measuring mechanical signals with bioelectronics In vivo stimulation and recording 10. Functional electric stimulation 11. In vivo electrophysiology Optical recording and control of neurons (optogenetics) 12. Measuring neurons optically, fundamentals of optical microscopy 13. Fluorescent probes and scanning microscopy, optogenetics, in vivo microscopy 14. Measuring biochemical signals | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A detailed script is provided to each lecture including the exercises and their solutions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Plonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course requires an open attitude to the interdisciplinary approach of bioelectronics. In addition, it requires undergraduate entry-level familiarity with electric & magnetic fields/forces, resistors, capacitors, electric circuits, differential equations, calculus, probability calculus, Fourier transformation & frequency domain, lenses / light propagation / refractive index, pressure, diffusion AND basic knowledge of biology and chemistry (e.g. understanding the concepts of concentration, valence, reactants-products, etc.). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-0021-00L | Materials and Mechanics in Medicine | W | 4 credits | 3G | M. Zenobi-Wong, J. G. Snedeker | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Understanding of physical and technical principles in biomechanics, biomaterials, tissue engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Biomaterials, Tissue Engineering, Tissue Biomechanics, Implants. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | course website on Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Introduction to Biomedical Engineering, 3rd Edition 2011, Autor: John Enderle, Joseph Bronzino, ISBN 9780123749796 Academic Press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-0203-00L | Movement and Sport Biomechanics | W | 4 credits | 3G | B. Taylor, R. List | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Learning to view the human body as a (bio-) mechanical system. Making the connections between everyday movements and sports activity with injury, discomfort, prevention and rehabilitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Students are able to describe the human body as a mechanical system. They analyse and describe human movement according to the laws of mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Movement- and sports biomechanics deals with the attributes of the human body and their link to mechanics. The course includes topics such as functional anatomy, biomechanics of daily activities (gait, running, etc.) and looks at movement in sport from a mechanical point of view. Furthermore, simple reflections on the loading analysis of joints in various situations are discussed. Additionally, questions covering the statics and dynamics of rigid bodies, and inverse dynamics, relevant to biomechanics are investigated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1504-00L | Physical Human Robot Interaction (pHRI) ![]() | W | 4 credits | 2V + 2U | O. Lambercy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems. By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de- sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to: 1) identify critical human factors in physical human-robot interaction and use these to derive design requirements; 2) compare and select mechatronic components that optimally fulfill the defined design requirements; 3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components into a functional system; 4) design control hardware and software and implement and test human-interactive control strategies on the physical setup; 5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics; 6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits. Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (https://relab.ethz.ch/downloads/open-hardware/haptic-paddle.html), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Will be distributed on Moodle before the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Abbott, J. and Okamura, A. (2005). Effects of position quantization and sampling rate on virtual-wall passivity. Robotics, IEEE Transactions on, 21(5):952 - 964. Adams, R. and Hannaford, B. (1999). Stable haptic interaction with virtual environments. Robotics and Automation, IEEE Transactions on, 15(3):465 - 474. Buerger, S. and Hogan, N. (2007). Complementary stability and loop shaping for improved human-robot interaction. Robotics, IEEE Transactions on, 23(2):232 - 244. Burdea, G. and Brooks, F. (1996). Force and touch feedback for virtual reality. John Wiley & Sons New York NY. Colgate, J. and Brown, J. (1994). Factors affecting the z-width of a haptic display. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, pages 3205 -3210 vol. 4. Diolaiti, N., Niemeyer, G., Barbagli, F., and Salisbury, J. (2006). Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. Robotics, IEEE Transactions on, 22(2):256 - 268. Gillespie, R. and Cutkosky, M. (1996). Stable user-specific haptic rendering of the virtual wall. In Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, volume 58, pages 397 - 406. Hannaford, B. and Ryu, J.-H. (2002). Time-domain passivity control of haptic interfaces. Robotics and Automation, IEEE Transactions on, 18(1):1 - 10. Hashtrudi-Zaad, K. and Salcudean, S. (2001). Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. The International Journal of Robotics Research, 20(6):419. Hayward, V. and Astley, O. (1996). Performance measures for haptic interfaces. In ROBOTICS RESEARCH-INTERNATIONAL SYMPOSIUM, volume 7, pages 195-206. Citeseer. Hayward, V. and Maclean, K. (2007). Do it yourself haptics: part i. Robotics Automation Magazine, IEEE, 14(4):88 - 104. Leskovsky, P., Harders, M., and Szeekely, G. (2006). Assessing the fidelity of haptically rendered deformable objects. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on, pages 19 - 25. MacLean, K. and Hayward, V. (2008). Do it yourself haptics: Part ii [tutorial]. Robotics Automation Magazine, IEEE, 15(1):104 - 119. Mahvash, M. and Hayward, V. (2003). Passivity-based high-fidelity haptic rendering of contact. In Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, volume 3, pages 3722 - 3728. Mehling, J., Colgate, J., and Peshkin, M. (2005). Increasing the impedance range of a haptic display by adding electrical damping. In Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages 257 - 262. Okamura, A., Richard, C., and Cutkosky, M. (2002). Feeling is believing: Using a force-feedback joystick to teach dynamic systems. JOURNAL OF ENGINEERING EDUCATION-WASHINGTON, 91(3):345 - 350. O'Malley, M. and Goldfarb, M. (2004). The effect of virtual surface stiffness on the haptic perception of detail. Mechatronics, IEEE/ASME Transactions on, 9(2):448 - 454. Richard, C. and Cutkosky, M. (2000). The effects of real and computer generated friction on human performance in a targeting task. In Proceedings of the ASME Dynamic Systems and Control Division, volume 69, page 2. Salisbury, K., Conti, F., and Barbagli, F. (2004). Haptic rendering: Introductory concepts. Computer Graphics and Applications, IEEE, 24(2):24 - 32. Weir, D., Colgate, J., and Peshkin, M. (2008). Measuring and increasing z-width with active electrical damping. In Haptic interfaces for virtual environment and teleoperator systems, 2008. haptics 2008. symposium on, pages 169 - 175. Yasrebi, N. and Constantinescu, D. (2008). Extending the z-width of a haptic device using acceleration feedback. Haptics: Perception, Devices and Scenarios, pages 157-162. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Notice: The registration is limited to 26 students There are 4 credit points for this lecture. The lecture will be held in English. The students are expected to have basic control knowledge from previous classes. http://www.relab.ethz.ch/education/courses/phri.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1714-00L | Biocompatible Materials | W | 4 credits | 3V | K. Maniura, M. Rottmar, M. Zenobi-Wong | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The course covers the follwing topics: 1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. 4. Introduction to different material classes in use for medical applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed. A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts are deposited online (moodle). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature: - Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013 - Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011 (available online via ETH library) Handouts and references therin. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Focus Coordinators: Prof. Stefano Brusoni D-MTEC and Swantje Pless D-MTEC | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0733-00L | Basics and Processes of Metal Forming Note: The previous course title until HS21 "Forming Technology III - Forming Processes". | W | 4 credits | 2V + 2U | M. Bambach | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture teaches on the basic knowledge of major processes in sheet metal, tube and bulk metal forming technologies. In particular it focuses on fundamental computation methods, which allow a fast assessment of process behaviour and a rough layout. Process-specific states of stress and deformation are analysed and process limits are identified. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Acquaintance with forming processes. Determination of forming processes. Interpretation of forming manufacturing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The study of metal working processes: sheet metal forming, folding die cutting, cold bulk metal forming, ro extrusion, plunging, open die forging, drop forging, milling; active principle; elementary methods to estimate stress and strain; fundamentals of process design; manufacturing limits and machining accuracy; tools and operation; machinery and machine usage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | ja | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0445-00L | Production and Operations Management | W+ | 3 credits | 2G | T. Netland, H. Franke | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This core course provides insights into the basic theories, principles, concepts, and techniques used to design, analyze, and improve the operational capabilities of an organization. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | This course provides students with a broad theoretical basis for understanding, designing, analyzing, and improving manufacturing operations. After completing this course: 1. Students can apply key concepts of POM to detail an operations strategy. 2. Students can do simple forecasting of demand and plan the needed capacity to meet it. 3. Students can conduct process mapping analysis, use it to design and improve processes and layouts, and elaborate on the limitations of the chosen method. 4. Students can choose IT, OT, and automation technology for manufacturing applications. 5. Students can design information flows, manage master data, and use it to plan and control a factory. 6. Students can design material flows in and beyond factories. 7. Students can design performance management systems. 8. Students can select and use problem-solving tools to improve quality and productivity. 9. Additional skills: Students acquire experience in teamwork. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course covers the most fundamental strategic and tactical concepts in production and operations management (POM). Production and Operations Management (POM) is at the heart of any business. It is concerned with the business processes that transform input into output and deliver products and services to customers. Factory management is an important part of POM, but it is much more than what takes place inside the production facilities of companies like ABB, Boeing, BMW, LEGO, Nestlé, Roche, TESLA, and Toyota. Did you know that the largest portion of assets and employees in most organizations are engaged in the operations function? Although this course focuses on manufacturing, all types of organizations depend on their operational capabilities. With the ongoing globalization and digitization of manufacturing, POM has won a deserved status for providing a competitive advantage. This course covers the following topics: Introduction to POM, Manufacturing strategy, Forecasting and capacity, Process design, Layout, Industry 4.0, Information flow, Material flow, Logistics/SCM Performance management, Performance improvement, Quality management, and Maintenance. This course is administered via Moodle. The course is designed around five elements: 1. Textbook. Baudin and Netland (2022) Introduction to Manufacturing: An Industrial Engineering and Management Perspective, 1st Ed. Routledge. 2. Video lectures. Short video lectures presenting basic POM concepts. 3. Class lectures. Deep-dives with case examples on select topics. 4. FactoryVR group assignment. FactoryVR allows students to visit factories virtually. 5. Quizzes. A few quizzes during the semester help students check their progress and prepare for the written exam. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Suggested literature is provided in the syllabus. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0541-00L | Systems Dynamics and Complexity | W+ | 3 credits | 3G | F. Schweitzer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Finding solutions: what is complexity, problem solving cycle. Implementing solutions: project management, critical path method, quality control feedback loop. Controlling solutions: Vensim software, feedback cycles, control parameters, instabilities, chaos, oscillations and cycles, supply and demand, production functions, investment and consumption | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | A successful participant of the course is able to: - understand why most real problems are not simple, but require solution methods that go beyond algorithmic and mathematical approaches - apply the problem solving cycle as a systematic approach to identify problems and their solutions - calculate project schedules according to the critical path method - setup and run systems dynamics models by means of the Vensim software - identify feedback cycles and reasons for unintended systems behavior - analyse the stability of nonlinear dynamical systems and apply this to macroeconomic dynamics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Why are problems not simple? Why do some systems behave in an unintended way? How can we model and control their dynamics? The course provides answers to these questions by using a broad range of methods encompassing systems oriented management, classical systems dynamics, nonlinear dynamics and macroeconomic modeling. The course is structured along three main tasks: 1. Finding solutions 2. Implementing solutions 3. Controlling solutions PART 1 introduces complexity as a system immanent property that cannot be simplified. It introduces the problem solving cycle, used in systems oriented management, as an approach to structure problems and to find solutions. PART 2 discusses selected problems of project management when implementing solutions. Methods for identifying the critical path of subtasks in a project and for calculating the allocation of resources are provided. The role of quality control as an additional feedback loop and the consequences of small changes are discussed. PART 3, by far the largest part of the course, provides more insight into the dynamics of existing systems. Examples come from biology (population dynamics), management (inventory modeling, technology adoption, production systems) and economics (supply and demand, investment and consumption). For systems dynamics models, the software program VENSIM is used to evaluate the dynamics. For economic models analytical approaches, also used in nonlinear dynamics and control theory, are applied. These together provide a systematic understanding of the role of feedback loops and instabilities in the dynamics of systems. Emphasis is on oscillating phenomena, such as business cycles and other life cycles. Weekly self-study tasks are used to apply the concepts introduced in the lectures and to come to grips with the software program VENSIM. Another objective of the self-study tasks is to practice efficient communication of such concepts. These are provided as home work and two of these will be graded (see "Prerequisites"). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The lecture slides are provided as handouts - including notes and literature sources - to registered students only. All material is to be found on the Moodle platform. More details during the first lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0541-02L | Systems Dynamics and Complexity (Additional Cases) ![]() Only for Mechanical Engineering BSc. | W+ | 1 credit | G. Casiraghi | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This module is an addition to the course Systems Dynamics and Complexity. It offers additional study cases to MAVT Bachelor students who enroll in the main course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | MAVT Bachelor students learn how to develop and analyze more sophisticated systems dynamics models from different areas, e.g. from biology (population dynamics, cooperation), management (inventory modeling, technology adoption and economics (supply and demand, investment and consumption), to name but a few. The goal is to apply analytical and numeric techniques to gain a deeper understanding of the dynamics of complex systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Modelling path dependence and formation of standards - Why do clocks go clockwise? Why do people in most nations drive on the right? Why do nearly all computer keyboards have the QWERTY layout, even though it is more inefficient compared to DVORAK? It turns out that many real-world processes are path depended, i.e. small random events early in their history determine the ultimate end state, even when all end states are equally likely at the beginning. Students will learn how to model such processes, to understand the feedback mechanisms that lead to path dependence. As a case in point, we will study the 'war' between the Betamax and the VHS standards. 2. Optimal migration as promoter of cooperation - Mechanisms to promote cooperative behaviour is a vibrant research topic in various fields - economics, evolutionary biology and management science to name but a few. Students will be introduced to one such mechanism - migration. They will develop and analyse a macroscopic model to study how the rate of migration affects the long-term cooperation rate in a population. 3. Information transfer - Information flow in a social system (e.g. about the location of resources or appearance of a competitor) is an important component of group living. For example, it is well known that ants can achieve remarkable feats in finding an optimal route to a food patch through pheromone trails. The goal of this study case is to model information transfer in such systems by investigating the dynamics of trail formation in ants. The students will learn that the complexity in navigating to a food source may nevertheless be explained as a simple dynamical system with one control parameter only. 4. Decisions in social societies - In many situations individuals have to decide between two or more options. Such decisions often have a profound impact on the system as a whole, especially regarding group cohesion. Group cohesion is preferred, as individuals can benefit from living in groups, yet it may not be the underlying reason behind individual choices. In this case, students will develop and extend a macroscopic model of an animal social system faced with a decision to choose a new home, and identify the conditions which promote group cohesion versus group splitting. 5. Antigenic variation of HIV - One of the characteristic traits of HIV is that a host can be a carrier and a transmitter of the virus without experiencing symptoms for up to 10 years. This case is concerned with finding the mechanism of HIV disease progression. The students will develop a general population-based model for the interaction of an infectious agent with the host immune system. The model is applicable to a variety of infectious agents, ranging from acute lethal infections to chronic illness. Through analysing and simulating the model, the students will understand how the HIV virus interacts with the host and how the mutation rate of the virus is ultimately responsible for this long asymptomatic period. 6. Compartmental models in epidemiology - Many diffusive processes in social systems, such as epidemics, can be understood as a result of the interaction between a few groups (compartments) of individuals. The most common example is to divide a population into those who are susceptible (S) to a disease, those who are infected (I), and those who have recovered (R) and are immune, and to model their interactions. These so called SIR models find wide application in studying non-biological diffusive processes, e.g. spread of technological innovations, fads , internet memes etc. In this study case, students will become familiar with the basic components of an SIR model and the conditions under which a disease can cause the outbreak of an epidemic. Students will extend the basic model to investigate more realistic scenarios relevant to e.g. different vaccination strategies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Will be provided | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
351-0778-00L | Discovering Management Entry level course in management for BSc, MSc and PHD students at all levels not belonging to D-MTEC. This course can be complemented with Discovering Management (Excercises) 351-0778-01. | W | 3 credits | 3G | B. Clarysse, S. Brusoni, F. Da Conceição Barata, H. Franke, V. Hoffmann, P. Tinguely, L. P. T. Vandeweghe | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Discovering Management offers an introduction to the field of business management and entrepreneurship for engineers and natural scientists. By taking this course, students will enhance their understanding of management principles and the tasks that entrepreneurs and managers deal with. The course consists of theory and practice sessions, presented by a set of area specialists at D-MTEC. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The general objective of Discovering Management is to introduce students into the field of business management and entrepreneurship. In particular, the aims of the course are to: (1) broaden understanding of management principles and frameworks (2) advance insights into the sources of corporate and entrepreneurial success (3) develop skills to apply this knowledge to real-life managerial problems The course will help students to successfully take on managerial and entrepreneurial responsibilities in their careers and / or appreciate the challenges that entrepreneurs and managers deal with. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course consists of a set of theory and practice sessions, which will be taught on a weekly basis. The course will cover business management knowledge in corporate as well as entrepreneurial contexts. The course consists of three blocks of theory and practice sessions: Discovering Strategic Management, Discovering Innovation Management, and Discovering HR and Operations Management. Each block consists of two or three theory sessions, followed by one practice session where you will apply the theory to a case. The theory sessions will follow a "lecture-style" approach and be presented by an area specialist within D-MTEC. Practical examples and case studies will bring the theoretical content to life. The practice sessions will introduce you to some real-life examples of managerial or entrepreneurial challenges. During the practice sessions, we will discuss these challenges in depth and guide your thinking through team coaching. Through small group work, you will develop analyses of each of the cases. Each group will also submit a "pitch" with a clear recommendation for one of the selected cases. The theory sessions will be assessed via a multiple choice exam. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle. These course materials will form the point of departure for the lectures, class discussions and team work. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
351-0778-01L | Discovering Management (Exercises) Complementary exercises for the module Discovering Managment. Prerequisite: Participation and successful completion of the module Discovering Management (351-0778-00L) is mandatory. | W | 1 credit | 1U | B. Clarysse, L. P. T. Vandeweghe | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course is offered complementary to the basis course 351-0778-00L, "Discovering Management". The course offers an additional exercise. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The general objective of Discovering Management (Exercises) is to complement the course "Discovering Management" with one larger additional exercise. Discovering Management (Exercises) thus focuses on developing the skills and competences to apply management theory to a real-life exercise from practice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Students who are enrolled for “Discovering Management Exercises” are asked to write an essay about a particular management issue of choice, using your insights from Discovering Management. Students have the option to either write this alone or in a group of two students. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | All course materials (readings, slides, videos, and worksheets) will be made available to inscribed course participants through Moodle. Students following this course should also be enrolled for course 351-0778-00L, "Discovering Management". | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0387-00L | Corporate Sustainability | W | 3 credits | 2G | V. Hoffmann, J. Meuer, A. Nunez-Jimenez | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture explores current challenges of corporate sustainability and prepares students to become champions for sustainable business practices. In the beginning, traditional lectures are complemented by e-modules that allow students to train critical thinking skills. In the 2nd half of the semester, students work in teams on sustainability challenges related to water, energy, mobility, and food. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Students - assess the limits and the potential of corporate sustainability for sustainable development - develop critical thinking skills (argumentation, communication, evaluative judgment) that are useful in the context of corporate sustainability using an innovative writing and peer review method. - recognize and realize opportunities through team work for corporate sustainability in a business environment - present strategic recommendations in teams with different output formats (tv-style debate, consultancy pitch, technology model walk-through, campaign video) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | In the first part of the semester, Prof. Volker Hoffmann and Dr. Johannes Meuer will share his insights on corporate sustainability with you through a series of lectures. They introduce you to a series of critical thinking exercises and build a foundation for your group work. In the second part of the semester, you participate in one of four tracks in which SusTec researchers will coach your groups through a seven-step program. Our ambition is that you improve your analytic and organizational skills and that you can confidently stand up for corporate sustainability in a professional setting. You will share the final product of your work with fellow students in a final puzzle session at the end of the semester. http://www.sustec.ethz.ch/teaching/lectures/corporate-sustainability.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Presentation slides will be made available on moodle prior to lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature recommendations will be distributed during the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | TEACHING FORMAT/ ATTENDANCE: Please note that we aim to offer you the course in-class and online, but at this point we cannot guarantee that a purely online participation is possible. Irrespective of the format (in-class or online), the course includes several mandatory sessions that participants must attend to successfully earn credit points. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0389-00L | Technology and Innovation Management | W | 3 credits | 2G | S. Brusoni, A. Zeijen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course focuses on the analysis of innovation as a pervasive process that cuts across organizational and functional boundaries. It looks at the sources of innovation, at the tools and techniques that organizations deploy to routinely innovate, and the strategic implications of technical change. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | This course intends to enable all students to: - Acquire and understand the basic jargon necessary to discuss, in a precise and concise manner, innovation processes and their outcomes - Analyse the relationship between individual and organizational decision processes and their innovative outcomes - Discuss the relevance and importance of different decision-making criteria, and critically assess their impact on desired innovative outcomes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course looks at technology and innovation management as a process. Continuously, organizations are faced with a fundamental decision: they have to allocate resources between well-known tasks that reliably generate positive results; or explore new ways of doing things, new technologies, products and services. The latter is a high risk choice. Its rewards can be high, but the chances of success are small. How do firms organize to take these decisions? What kind of management skills are necessary to take them? What kind of tools and methods are deployed to sustain managerial decision-making in highly volatile environments? These are the central questions on which this course focuses, relying on a combination of lectures, case-based discussion, and guest speakers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Slides will be available on the Moodle page | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Readings will be available on the Moodle page | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course content and methods are designed for students with some background in management and/or economics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0389-02L | Technology and Innovation Management (Additional Cases) ![]() ![]() Only for Mechanical Engineering BSc. | W | 1 credit | 1U | S. Brusoni | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This module focuses on the topics that lie at the intersection between management and engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Through a project, the students will focus on discussing the business implications of a technology using the tools and theories used in the TIM lecture. This would enable the students to deepen their understanding of managerial issues while focusing on a specific technology. Topics for project work will be proposed in the beginning of the semester | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The lecture 363-0389-00L Technology and Innovation Management needs to be taken in order to participate in this module | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0565-00L | Principles of Macroeconomics | W | 3 credits | 2V | J.‑E. Sturm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course examines the behaviour of macroeconomic variables, such as gross domestic product, unemployment and inflation rates. It tries to answer questions like: How can we explain fluctuations of national economic activity? What can economic policy do against unemployment and inflation? | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | This lecture will introduce the fundamentals of macroeconomic theory and explain their relevance to every-day economic problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course helps you understand the world in which you live. There are many questions about the macroeconomy that might spark your curiosity. Why are living standards so meagre in many African countries? Why do some countries have high rates of inflation while others have stable prices? Why have some European countries adopted a common currency? These are just a few of the questions that this course will help you answer. Furthermore, this course will give you a better understanding of the potential and limits of economic policy. As a voter, you help choose the policies that guide the allocation of society's resources. When deciding which policies to support, you may find yourself asking various questions about economics. What are the burdens associated with alternative forms of taxation? What are the effects of free trade with other countries? How does the government budget deficit affect the economy? These and similar questions are always on the minds of policy makers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The course webpage (to be found at https://moodle-app2.let.ethz.ch/course/view.php?id=17628) contains announcements, course information and lecture slides. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | The set-up of the course will closely follow the book of N. Gregory Mankiw and Mark P. Taylor (2020), Economics, Cengage Learning, Fifth Edition. This book can also be used for the course '363-0503-00L Principles of Microeconomics' (Filippini). Besides this textbook, the slides, lecture notes and problem sets will cover the content of the lecture and the exam questions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0711-00L | Accounting for Managers | W | 3 credits | 2V | H. Chen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course Accounting for Managers offers an introduction to financial accounting and management accounting. It provides managers with the necessary knowledge for decision making using accounting information. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | By attending this course, students will be able to: - record business transactions on the different types of accounts. - establish a balance sheet and an income statement. - prepare the different financial reports. - understand the principles of cost accounting. - determine the cost of production. - make decisions based on cost information. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The first part of the course is devoted to financial accounting. It teaches the principles of double-entre accounting and deals with the recording of commercial transactions on accounts. It describes the work to be carried out at the closing in order to prepare the financial reports according to the generally accepted accounting principles. This type of accounting information is primarily intended for investors and shareholders. The second part of the course describes the principles of management accounting and explains the different costing methods. It aims to determine the manufacturing cost of production of the different products and services using full and variable costing methods. The accounting information focuses on the internal needs of managers for the purpose of budget preparation and profitability analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This course is a prerequisite for the course Financial Management. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0790-00L | Technology Entrepreneurship | W | 2 credits | 2V | F. Hacklin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Technology ventures are significantly changing the global economic picture. Technological skills increasingly need to be complemented by entrepreneurial understanding. This course offers the fundamentals in theory and practice of entrepreneurship in new technology ventures. Main topics covered are success factors in the creation of new firms, including founding, financing and growing a venture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | This course provides theory-grounded knowledge and practice-driven skills for founding, financing, and growing new technology ventures. A critical understanding of dos and don'ts is provided through highlighting and discussing real life examples and cases. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 12 sessions; 10+ carried out by guest speakers: experts in the broad field of technology entrepreneurship (e.g., serial entrepreneurs, venture capitalists, (E)MBA professors, company builders, patent experts, scale-up executives, …) 2h lecture - schedule (±): 15': Introduction 60': (Guest) lecture 15': Discussion related to topic (in groups) 10': Plenary discussion 20': Q&A with (guest) lecturer Sessions are carried out via zoom, recordings are uploaded on Moodle. Sessions can also be followed in reserved lecture room. Semester assignment: Construction of 1 appropriate exam question (MPC) related to a specific guest lecture. 13th session: MPC exam, heavily based on questions generated from the semester assignment. These will be published on Moodle as a preparation for the exam. See course website: Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides and case material | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-1082-00L | Enabling Entrepreneurship: From Science to Startup ![]() Students should provide a brief overview (unto 1 page) of their business ideas that they would like to commercialise through the course. If they do not have an idea, they are required to provide a motivation letter stating why they would like to do this elective. If you are unsure about the readiness of your idea or technology to be converted into a startup, please drop me a line to schedule a call or meeting to discuss. The total number of students will be limited to 50. The students should submit the necessary information until 19 September 2022 and apply to anilsethi@ethz.ch | W | 3 credits | 2V | A. Sethi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This elective is relevant for students who have developed a technology and are keen to evaluate the steps in starting a startup. This is also relevant for students who would like to start a startup but do not have a technology, but are clear on a specific market and the impact they would like to create. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Students have technology competence or an idea that they would like to convert into a startup. They are now in the process of evaluating the steps necessary to do so. In summary: 1. Students want to become entrepreneurs 2. The students can be from business or science & technology 3. The course will enable the students to identify the relevance of their technology or idea from the market relevance perspective and thereby create a business case to take it to market. 4. The students will have exposure to investors and entrepreneurs (with a focus on ETH spin-offs) through the course, to gain insight to commercialise their idea | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The students would cover the following topics, as the build their idea into a business case: 1. Technology excellence: this assumes that the student has achieved a certain degree of competence in the area of technology that he or she expects to bring to the market 2. Market need and market relevance: The student would then be expected to identify the possible markets that may find the technology of relevance. Market relevance implies the process of identification of how relevant the market perceives the technology, and whether this can sustain over a longer period of time 3. IP and IP strategy: Intellectual property, whether in the form of a patent or a trade secret, implies the secret ingredient that enables the student to achieve certain results that competitors are unable to copy. This enables the student (and subsequently the startup) to hold on to the market that they create with customers 4. Team including future capabilities required: a startup requires multiple people with complementary capabilities. They also need to be motivated while at the same time protecting the interests of the startup 5. Financials: There is a need of funding to achieve milestones. This includes funding for salaries and running of the company 6. Investors and funding options: There are multiple funding options for a startup. They all come with different advantages and limitations. It's important for a startup to recognise its needs and find the investors that fit these needs and are best aligned with the vision of the founders 7. Preparation of business case: The students will finally prepare the business case that can help them to articulate the link of the technology with the market need and its willingness to pay 8. Legal overview, company forms and shareholders’ agreements (including pitfalls) The seminar includes talks from invited investors, entrepreneurs and legal experts regarding the importance of the various elements being covered in content, workshops and teamwork. There is a particular emphasis on market validation on each step of the journey, to ensure relevance. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Since the course will revolve around the ideas of the students, the notes will be for the sole purpose of providing guidance to the students to help convert their technologies or ideas into business cases for the purpose of forming startups. Theoretical subject matter will be kept to a minimum and is not the focus of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Book Sethi, A. "From Science to Startup" ISBN 978-3-319-30422-9 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This course is relevant for those students who aspire to become entrepreneurs. Students applying for this course are requested to submit a 1 page business idea or, in case they don't have a business idea, a brief motivation letter stating why they would like to do this course. If you are unsure about the readiness of your idea or technology to be converted into a startup, please drop me a line to schedule a call or meeting to discuss. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-1017-00L | Risk and Insurance Economics | W | 3 credits | 2G | H. Schernberg | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course covers the economics of risk and insurance, in particular the following topics will be discussed: 2) individual decision making under risk 3) models of insurance demand, risk sharing, insurance supply 4) information issues in insurance markets 5) advanced topics in microeconomics and behavioral economics 5) the macroeconomic role of insurers and insurance regulation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The course introduces students to basic microeconomic models of risk attitudes and highlight the role insurance can – or cannot – play for individuals facing risks. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Everyday, we take decisions involving risks. These decisions are driven by our perception of and our appetite for risk. Insurance plays a significant role in people's risk-management strategies. In the first part of this lecture, we discuss a normative decision concept, Expected Utility theory, and compare it with empirically observed behaviour. Students then learn about the rationale for individuals to purchase insurance, and for companies to offer it. We derive the optimal level of insurance demand and discuss how it depends on our model's underlying assumptions. We then discuss the consequences of information asymmetries in insurance markets and the consequences for insurance supply. Finally, we discuss refinements in decision theory that help account for observed behaviours that don't fit with the basic models of microeconomic theory. For example, we'll explore how behavioural economics can be leveraged by the insurance industry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Main literature: - Zweifel, P., & Eisen, R. (2012). Insurance Economics. Springer. - Handbook of the Economics of Risk and Uncertainty, Volume1; Further readings: - Dionne, G. (Ed.). (2013). Handbook of Insurance (2nd ed.). Springer. References will be given on a topic-by-topic basis during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
351-1109-00L | Introduction to Microeconomics GESS (Science in Perspective): This course is only for students enrolled in a Bachelor’s degree programme. Students enrolled in a Master’s degree programme may attend “Principles of Microeconomics” (LE 363-0503-00L) instead. Note for D-MAVT students: If you have already successfully completed “Principles of Microeconomics” (LE 363-0503-00L), then you will not be permitted to attend it again. | W | 3 credits | 2G | M. Wörter, M. Beck | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course introduces basic principles, problems and approaches of microeconomics. It describes economic decisions of households and firms, and their coordination through perfectly competitive markets. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Students acquire a deeper understanding of basic microeconomic models. They acquire the ability to apply these models in the interpretation of real world economic contexts. Students acquire a reflective and contextual knowledge on how societies use scarce resources to produce goods and services and distribute them among themselves. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Market, budget constraint, preferences, utility function, utility maximisation, demand, technology, profit function, cost minimisation, cost functions, perfect competition, information and communication technologies | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Course material in e-learning environment https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Varian, Hal R. (2014), Intermediate Microeconomics, W.W. Norton | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This course "Einführung in die Mikroökonomie“ (363-1109-00L) is intended for Bachelor students and LE 363-0503-00 "Principles of Microeconomics" for Master students. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Focus Coordinator: Prof. Kristina Shea In order to achieve the required 20 credit points for the Focus Specialization Design, Mechanics and Material you are free to choose any of the courses offered within the focus and are encouraged to select among those recommended. If you wish to take one of the Master level courses, you must get approval from the lecturer. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0364-00L | Lightweight Structures Laboratory ![]() ![]() Number of participants limited to 24. | W+ | 4 credits | 5A | M. Zogg, P. Ermanni | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Teams of 2 to 3 students have to design, size, and manufacture a lightweight structre complying with given specifications. An aircraft wing spar prototype as well as later a second improved spar will be tested and assessed regarding to design and to structural mechanical criteria. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | To develop the skills to identify and solve typical problems of the structure mechanics on a real application. Other important aspects are to foster team work and team spirit, to link theoretical knowledge and practice, to gather practical experiences in various fields related to lightweight structures such as design, different CAE-methods and structural testing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The task of each team (typically 2-2 students) is the realization of a reduced-scale aircraft wing spar, a typical load-carrying structure, with selected materials. The teams are free to develop and implement their own ideas. In this context, specified requirements include information about loads, interface to the surrounding structures. The project is structured as described below: - Concept development - design of the component including FEM simulation and stability checks - manufacturing and structural testing of a prototype in the lab - manufacturing and structural testing of an improved component in the lab - cost assessment - Report The project work is supported by selected teaching units. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | handouts for selected topics are available | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-3207-00L | Lightweight | W+ | 4 credits | 2V + 2U | P. Ermanni, T. Tancogne-Dejean, M. Zogg | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The elective course Lightweight includes numerical methods for the analysis of the load carrying and failure behavior of lightweight structures, as well as construction methods and design principles for lightweight design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The goal of this course is to convey substantiated background for the understanding and the design and sizing of modern lightweight structures in mechanical engineering, vehicle and airplane design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Lightweight design Thin-walled beams and structures Instability behavior of thin walled structures Reinforced shell structures Load introduction in lightweight structures Joining technology Sandwich design | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Script, Handouts, Exercises | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-3213-00L | Integrative Ski Building Workshop ![]() Number of participants limited to 12. To apply, please send the following information to jchapuis@ethz.ch by 31.08.2022: Letter of Motivation (one page) , CV, Transcript of Records. | W+ | 4 credits | 9P | K. Shea | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces students to engineering design and fabrication by building their own skis or snowboard. Theoretical and applied engineering design skills like CAD, analysis and engineering of mechanical properties, 3D printing, laser cutting and practical handcrafting skills are acquired in the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The objectives of the course are to use the practical ski/board design and building exercise to gain hands-on experience in design, mechanics and materials. A selection of sustainable materials are also used to introduce students to sustainable design. The built skis/board will be mechanically tested in the lab as well as together out in the field on a ski day and evaluated from various perspectives. Students can keep their personal built skis/boards after the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This practical ski/board design and building workshop consists of planning, designing, engineering and building your own alpine ski or snowboard. Students learn and execute all the needed steps in the process, such as engineering design, CAD, material selection, analysis of the mechanical properties of a composite layup, fabrication, routing wood cores, 3D printing of plastic protectors, milling side walls from wood or ABS plastic, laying up the fibers from carbon, glas, basalt or flax, laminating with resins, sanding and finishing, as well as laser engraving and veneer wood inlays. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | available on Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Willingness to engage in the practical building of your ski/board also beyond the course hours in the evening. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0509-00L | Acoustics in Fluid Media: From Robotics to Additive Manufacturing Note: The previous course title until HS21 "Microscale Acoustofluidics" | W | 4 credits | 3G | D. Ahmed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course will provide you with the fundamentals of the new and exciting field of ultrasound-based microrobots to treat various diseases. Furthermore, we will explore how ultrasound can be used in additive manufacturing for tissue constructs and robotics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The course is designed to equip students with skills in the design and development of ultrasound-based manipulation devices and microrobots for applications in medicine and additive manufacturing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Yes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions ( both compulsary) and hand in homework. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0524-00L | Continuum Mechanics I | W | 4 credits | 2V + 1U | A. E. Ehret | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture deals with constitutive models that are relevant for the design and analysis of structures. These include anisotropic linear elasticity, linear viscoelasticity, plasticity and viscoplasticity. The basic concepts of homogenization and laminate theory are introduced. Theoretical models are complemented by examples of engineering applications and experiments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Basic theories for solving continuum mechanics problems of engineering applications, with particular focus on constitutive models. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Anisotropic elasticity, Linear elastic and linear viscous material behavior, Viscoelasticity, Micro-macro modelling, Laminate theory, Plasticity, Viscoplasticity, Examples of engineering applications, Comparison with experiments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0544-00L | Metal Additive Manufacturing - Mechanical Integrity and Numerical Analysis | W | 4 credits | 3G | E. Hosseini | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | An introduction to Metal Additive Manufacturing (MAM) (e.g. different techniques, the metallurgy of common alloy-systems, existing challenges) will be given. The focus of the lecture will be on the employment of different simulation approaches to address MAM challenges and to enable exploiting the full advantage of MAM for the manufacture of structures with desired property and functionality. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The main objectives of this lecture are: - Acknowledging the possibilities and challenges for MAM (with a particular focus on mechanical integrity aspects), - Understanding the importance of material science and metallurgical considerations in MAM, - Appreciating the importance of thermal, fluid, mechanical and microstructural simulations for efficient use of MAM technology, - Using different commercial analysis tools (COMSOL, ANSYS, ABAQUS) for simulation of the MAM process. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Introduction to MAM (concept, application examples, pros & cons), - Powder-bed and powder-blown metal additive manufacturing, - Thermo-fluid analysis of additive manufacturing, - Continuum-based thermal modelling and experimental validation techniques, - Residual stress and distortion simulation and verification methods, - Microstructural simulation (basics, analytical, kinetic Monte Carlo, cellular automata, phase-field), - Mechanical property prediction for MAM, - Microstructure and mechanical response of MAM material (steels, Ti6Al4V, Inconel, Al alloys), - Design for additive manufacturing - Artificial intelligence for AM Exercise sessions use COMSOL, ANSYS, ABAQUS packages for analysis of MAM process. Detailed video instructions will be provided to enable students to set up their own simulations. COMSOL, ANSYS and ABAQUS agreed to support the course by providing licenses for the course attendees and therefore the students can install the packages on their own systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts of the presented slides. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | No textbook is available for the course (unfortunately), since it is a dynamic and relatively new topic. In addition to the material presented in the course slides, suggestions/recommendations for additional literature/publications will be given (for each individual topic). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | A basic knowledge of mechanical analysis, metallurgy, thermodynamics is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-3209-00L | Engineering Design Optimization ![]() Number of participants limited to 60. | W | 4 credits | 4G | K. Shea, T. Stankovic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course covers fundamentals of computational optimization methods in the context of engineering design. It develops skills to formally state and model engineering design tasks as optimization problems and select appropriate methods to solve them. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The lecture and exercises teach the fundamentals of optimization methods in the context of engineering design. After taking the course students will be able to express engineering design problems as formal optimization problems. Students will also be able to select and apply a suitable optimization method given the nature of the optimization model. They will understand the links between optimization and engineering design in order to design more efficient and performance optimized technical products. The exercises are MATLAB based. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Optimization modeling and theory 2. Unconstrained optimization methods 2. Constrained optimization methods - linear and non-linear 4. Direct search methods 5. Stochastic and evolutionary search methods 6. Multi-objective optimization | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | available on Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-1204-00L | Materials at Work I | W | 4 credits | 4S | R. Spolenak, E. Dufresne, R. Koopmans | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course attempts to prepare the student for a job as a materials engineer in industry. The gap between fundamental materials science and the materials engineering of products should be bridged. The focus lies on the practical application of fundamental knowledge allowing the students to experience application related materials concepts with a strong emphasis on case-study mediated learning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Teaching goals: to learn how materials are selected for a specific application to understand how materials around us are produced and manufactured to understand the value chain from raw material to application to be exposed to state of the art technologies for processing, joining and shaping to be exposed to industry related materials issues and the corresponding language (terminology) and skills to create an impression of how a job in industry "works", to improve the perception of the demands of a job in industry | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course is designed as a two semester class and the topics reflect the contents covered in both semesters. Lectures and case studies encompass the following topics: Strategic Materials (where do raw materials come from, who owns them, who owns the IP and can they be substituted) Materials Selection (what is the optimal material (class) for a specific application) Materials systems (subdivisions include all classical materials classes) Processing Joining (assembly) Shaping Materials and process scaling (from nm to m and vice versa, from mg to tons) Sustainable materials manufacturing (cradle to cradle) Recycling (Energy recovery) After a general part of materials selection, critical materials and materials and design four parts consisting of polymers, metals, ceramics and coatings will be addressed. In the fall semester the focus is on the general part, polymers and alloy case studies in metals. The course is accompanied by hands-on analysis projects on everyday materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Manufacturing, Engineering & Technology Serope Kalpakjian, Steven Schmid ISBN: 978-0131489653 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Profound knowledge in Physical Metallurgy and Polymer Basics and Polymer Technology required (These subjects are covered at the Bachelor Level by the following lectures: Metalle 1, 2; Polymere 1,2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() The Engineering Tools courses are for MAVT Bachelor’s degree students only. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0015-10L | Engineering Tool: Experimental Modal Analysis ![]() All Engineering Tools courses are for MAVT Bachelor’s degree students only. Number of participants limited to 16. | W | 0.4 credits | 1K | D. Spescha | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Measuring and analysis methods for the determination of transfer functions of mechanical structures. Evaluation and preparation of the measured data for visualisation and interpretation of the dynamic behaviour. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Introduction into the practical application of measuring and analysis methods for determination of transfer functions of mechanical structures. Evaluation and preparation of the measured data for visualisation and interpretation of the dynamic behaviour. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Handling of accelerometers and force transducers, measurement of transfer functions of mechanical structures, determination and visualisation of vibration modes using practical examples, introduction to vibration theory and its fundamental terms. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | German documents are provided during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | In the practical part of the course, the participants will carry out measurements on structures themselves and then analyse them with respect to natural frequencies and vibration modes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0025-10L | Engineering Tool: Introduction to CAM and Motion Simulation ![]() All Engineering Tools courses are for MAVT Bachelor’s degree students only. Number of participants limited to 40. | W | 0.4 credits | 1K | M. Schmid | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction of integrated CAD applications CAM (Computer Aided Manufacturing), Motion Simulation (Kinematics) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The participants learn the possibilities of integrated CAD applications. The goal is to understand the procedures and the most important functions of these applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | CAM (Computer Aided Manufacturing): - Introduction to CAM - Practical examples for 3-axle milling machine and Feature Based Machining Motion Simulation (Kinematics/Dynamics): - Introduction and practical examples | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Voraussetzungen: - CAD-Grundkenntnisse in Siemens NX (CAD 1. Semester) - Verwenden Sie zur Durchführung der Übungen wenn möglich Ihr eigenes Laptop. Siemens NX kann im ETH IT-Shop kostenlos bestellt werden. Es stehen einige Rechner zur Verfügung. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0027-10L | Engineering Tool: Programming with LabView ![]() All Engineering Tools courses are for MAVT Bachelor’s degree students only. Number of participants limited to 16. | W | 0.4 credits | 1K | L. Prochazka | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | An introduction is given to the LabView programming environment. The basic concepts of "virtual instruments" and data flow programming are presented. Computer-based exercises are solved during class. A simple electronic data acquisition module is used to demonstrate basic concepts of interface management and data acquisition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Introduction to the LabView programming environment. Understanding of fundamental concepts: virtual instruments, data flow programming, control structures, data types etc. Development of basic programming skills using in-class exercises on computers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0030-10L | Engineering Tool: Modelling and Servo Axis Control of Machine Tool Manipulators ![]() All Engineering Tools courses are for MAVT Bachelor’s degree students only. Number of participants limited to 30. | W | 0.4 credits | 1K | O. Zirn | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course covers model building and the applied stimulation of (power-assisted axles on production machinery using MATLAB/Simulink and provides a practical example of how drive parameters may be set up, how through simulation an optimal axis design can be developed and which characteristics of a production machine can be reliably estimated in advance. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The students are able to model servo axes considering all relevant components and process influences to simulate the achievable productivity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Introduction, complexity levels in model building for production machines. 2. Servo axis feedback control, cascade controller 3. Numerical control systems, setpoint generation 4. Simulation examples in MATLAB/Simulink 5. Outlook longitudinal model for battery electric vehicles | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Wird abgegeben | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Matlab skills; your laptop with Matlab/Simulink may be useful. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0032-10L | Engineering Tool: Introduction to the Methods of Six Sigma Quality Control and Lean Production ![]() All Engineering Tools courses are for MAVT Bachelor’s degree students only. Number of participants limited to 36. | W | 0.4 credits | 1K | B. G. Rüttimann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course introduces to Six Sigma quality management and quality improvement, which aims to reduce process variation and to sustain process capability. It introduces also to the Lean production principles, aiming to reduce waste within the processes as well as aiming to a customer taked JIT pull-production. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The participant gets an overview to the Operational Excellence philosophy and the working methods of these two approches. He learns the most important tools and the interaction of these two approaches. Introduction to the theory-specific aspects of Lean. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Understanding the changing environment - Globalization, customer requirements, production systems - Six Sigma quality philosophy - Lean Manufacturing and TPS (Toyota Production System) 2. Quality management with Six Sigma - What is Six Sigma - DMAIC problem solving approach - Use of different control charts - Evaluate process capability, DPMO, Cp, Cpk, Taguchi - Cause-effect diagram - Control plan and sustainability, PDCA 3. Introduction to the Lean approach - TPS model, Lean goals and principles - A3 project management - The 9 types of waste - Value add and non value add activities - The 8 Lean-Tools , whereof 4 - 5S workplace organization - Value stream mapping (excercise), Little's law, process metrics - Continous flow vs batch - Pull Principles, Kanban, DBR - Cell design - Linear Programming 4. Lean and Six Sigma in practice - How fits Lean and Six Sigma together - Continuous Improvement/Kaizen organization - Change-Management, risks - Inspire OPEX deployment approach | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Notes will be distributet. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | empfohlen: Rüttimann: Lean Compendium - Introduction to Modern Manufacturing Theory, Springer International, 2017 Rüttimann, Stöckli: Elements of Advanced Manufacturing Theory, Springer International, 2022 Ohno: Toyota Production System - Beyond Large Scale Production, Productivity Press, New York, 1988 Töpfer: Six Sigma - Konzeption und Erfolgsbeispiele für praktizierte Null-Fehler Qualität, Springer, 2007 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0047-00L | Engineering Tool: Agile Product Development ![]() All Engineering Tools courses are for MAVT Bachelor’s degree students only. Number of participants limited to 12. | W | 0.4 credits | 1K | M. Meboldt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Agile product development is gaining high interest in many industries. Still, only few hardware developing firms have adopted Agile approaches into their daily development work due to inadequate trainings. Within this course, students will be introduced to the culture and mindset behind Agile by solving a practical development task in a team of 4 students. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Students shall experience and internalize the key principles and practices of Agile product development. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to Agile (principles & methods), team-based development task. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A digital script will be distributed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0057-10L | Engineering Tool: Systems Engineering for Project Work ![]() All Engineering Tools courses are for MAVT Bachelor’s degree students only. Number of participants limited to 60. | W | 0.4 credits | 1K | R. Züst | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course is about a methodical basis of systematic project work, with a focus on demanding interdisciplinary problems. The participants will be shown how to use it appropriately and correctly in their projects. This short course is based on the "Systems Engineering" (SE) method, which was developed at the ETH. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The goals of this compact course are: - Goal-oriented identification and perception of relevant problem areas and project goal setting. - Deduction and development of procedures for a promising project, including systematic planning of the project content. - Development of work packages including efficient methodology - Simple embedding of the projects in the organization, including relationships with buyers, users and securing project participation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Nachmittag: - Einstieg ins Systems Engineering; Entstehung, Inhalt und Werdegang; Voraussetzungen (anspruchsvolle Fragestellungen, institutionelle Einbettung, Systemdenken und heuristische Prinzipien); - Grundstruktur und Inhalt Lebensphasenmodell; Grundstruktur in Inhalt Problemlösungszyklus; - Zusammenspiel von Lebensphasenmodell & Problemlösungszyklus in Projekten 2. Nachmittag: - Situationsanalyse: Systemanalyse (Systemabgrenzung (gestaltbarer Bereich, relevante Bereiche des Umsystems)), Methoden der Analyse und Modellierung, Umgang mit Vernetzung, Dynamik und Unsicherheit; wichtigste Methoden der IST-Zustands- und Zukunftsanalyse), - Zielformulierung (wichtigste Methoden der Zielformulieren), - Konzeptsynthese und Konzeptanalyse (u.a. Kreativität; wichtigste Methoden der Synthese und Analyse), 3. Nachmittag: - Beurteilung (u.a. Methoden für mehrdimensionale Kriterienvergleich, z.B. Kosten-Wirksamkeits-Analyse); Diskussion von Planungsbeispielen - Diskussion von Planungsbeispielen: Analyse des Methodeneinsatzes, Entwickeln alternativer Vorgehensschritte und Auswahl des zweckmässigsten Vorgehens | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Zusammenfassung wird in elektronischer Form abgegeben; Lehrbuch: die Grundlagen sind in einem Lehrbuch beschrieben Anwendungsbeispiele: 8 konkrete Anwendungen von Systems Engineering sind in einem Case-Book beschrieben | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Zielpublikum: Der Kurs richtet sich insbesondere an Personen, welche anspruchsvolle Projekte initiieren, planen und leiten müssen Lernmethode: Der Stoff wird mittels kurzer Vorträge vermittelt und an kurzen Fallbeispielen/Übungen vertieft. Zudem sollen die Lehrinhalte durch selbständiges Studium der Lehrmittel vertieft bzw. ergänzt werden. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0059-10L | Engineering Tool: CAD-Methodology and PDM-Technology in the Focus Project ![]() All Engineering Tools courses are for MAVT Bachelor’s degree students only. | W | 0.4 credits | 1K | M. Schütz | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The participants learn about the procedures and tools that are necessary to develop technical products. The focus is on computer-based design and development and the management in an integrated software environment. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The participants will deepen their existing CAD knowledge and learn new PDM knowledge, so that these may be directly applied and used in the focus project. - CAD refresh (Modelling, Assembling, Drafting, etc.) and CAD mythology for construction (Top-Down modelling) - Introduction to the Team Center (Siemens PDM System) - TeamCenter data flow, in particular the process of creating and managing new Items and Parts, the approval procedure and creating different versions of Parts The participants will learn and experiment with procedures by working on concrete examples so that they will subsequently be able to begin with independent product construction. The following topics will be dealt with in depth in the lectures supporting the focus project (Praxiskurs): CAD-Methodology, FE calculations, motion simulation and construction methodology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Afternoon: CAD refresher and top down modelling - To refresh already existing knowledge of CAD functionality. i. Sketch and features as well as manipulation and optimizing models. ii. Assembling iii. Drafting. iv. Organisation. working methods, conventions. -Top down modelling CAD i. Introduction to top down modelling and concept modelling ii. Case study of top down modelling 2.Afternoon: Introduction to TC (Team Center) - Introduction: Short introduction to PLM (What is the idea of PLM? PLM is more than the pure management of drawings!). - Lesson 1 - Team Center Rich Client Interface - Lesson 2 - TC data types - Lesson 3 - Construction from data in TC - Lesson 4 - Searching for and examining data. 3.Afternoon: TC application - Lesson 5 - Unit lists (PSE) - Lesson 6 - Cross-referencing - Lesson 7 - Data release - Lesson 8 - Product data examination | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | - at least two students of a Focus-Team should sign in for this course, if the use of Siemens Teamcenter PLM is given for the Team. - only for students participating in a Focus Project in the same semester | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0061-10L | Engineering Tool: Scientific Writing with LaTeX and Vector Graphics ![]() ![]() All Engineering Tools courses are for MAVT Bachelor’s degree students only. Number of participants limited to 80. | W | 0.4 credits | 1K | O. Lambercy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides insights into the structure and compilation of scientific papers and publications using LaTeX as well as open source software for image editing and the creation of vector graphics. LaTeX is a typesetting tool that separates text format and layout. It is widely used for reports and publications in the scientific domain. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | By looking at specific examples during class you will obtain an overview on composing scientific papers (e.g. bachelor theses, semester theses, master theses) using LaTeX and acquire the most important commands to typeset complex formulas, tables and graphics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | -- layout of scientific reports -- writing with LaTeX (structure, formatting, formulas, tables, graphics, references, table of contents, hyperlinks, packages) based on a template for bachelor/ semester/ master theses. -- graphic design and illustration using open source software and Matlab -- including PDF files in the report (project description, data sheets) -- managing bibliography databases | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | http://www.relab.ethz.ch/education/courses/engineering-tools-latex.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Particular: The exercises will be done on your personal laptop (at least one laptop per two students). The complete (full) LaTeX package, Inkscape and Gimp should be installed in advance. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0062-10L | Engineering Tool: Computer-Aided Design Methods ![]() All Engineering Tools courses are for MAVT Bachelor’s degree students only. Number of participants limited to 25. | W | 0.4 credits | 1K | T. Stankovic, K. Shea | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Participants will learn about the Computer-Aided Design fundamentals and methods that are necessary to model complex technical products. The focus will be placed on feature-based and parametric modelling that is common to all modern CAD tools used in mechanical engineering design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | CAD knowledge and skills will be further developed to enable students to recognize both the advantages and the limitations of current Computer-Aided Design tools. Examples of how to build feature-based and parametric models including design automation will be given along with common pitfalls. After taking the course students should be able to independently create effective feature-based and parametric models of mechanical parts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. CAD Methods and Feature-Based Design (2 afternoons): * CAD in the context of the design process * Feature types and their relation to mechanical design * Strategies for building feature-based assemblies * Integration of digital part libraries * Common issues and difficulties with feature interaction 2. CAD and Parametric Modeling (1 afternoon): * Designing and building parametric models * Design automation to create design variants * Common issues and difficulties with parametric modelling | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | available on Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0067-10L | Engineering Tool: Sketching and Visualization of Technical Concepts ![]() All Engineering Tools courses are for MAVT Bachelor’s degree students only. Number of participants limited to 20. | W | 0.4 credits | 1K | H. Stahl | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course is offered by the Design and Technology Lab Zurich. Effective visualizations of ideas are essential to communicate technical concepts. This course focusses on the basics of a coherent draft design through forms of sketches using various simple techniques. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Mastering various simple techniques for the visualization of technical ideas. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Basics in: Perspective, line drawing, proportions, implementation of the plan views of perspective | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | will be distributed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | It requires no further books | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Max 20 participants Material: Paper and pens | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0091-10L | Engineering Tool: Scientific Writing ![]() All Engineering Tools courses are for MAVT Bachelor’s degree students only. | W | 0.4 credits | 1K | T. Korner, A. N'Guyen van Chinh | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Participants acquire scientific writing basics as a core competency to communicate with different audiences. They apply important methods and tools to refine a scientific question, research and evalutate the necessary information, quote and paraphrase, and to plan the structure of their own text. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Students are able to - derive and structure ideas for a text starting from a scientific question using simple techniques - find literature sources, check their relevance and completeness, organize them with a suitable tool and cite correctly - apply a reading technique for summarizing a text - distinguish plagiarism, quotation and paraphrase in texts using the presented criteria and correctly cite or paraphrase external content - use and cite information from the Internet correctly - plan and structure specialized texts that refer to different target groups | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | KURSPROGRAMM LEHRFORMEN - Inputs: Kurzvorträge und Selbstlernsequenzen - Uebungen: Hausaufgaben und während des Nachmittags selbständig in Moodle anhand von Fallstudien - Feedback und Diskussion: Lösungen der Studierenden werden gemeinsam mit den Dozierenden besprochen und diskutiert Zu allen Inhaltsteilen gibt es Übungsteile in Moodle, für die ein Laptop mit funktionierendem Internetanschluss benötigt wird. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Computer for exercises during the afternoon | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
252-0864-00L | Engineering Tool: Parallel and Concurrent Programming in C++ ![]() All Engineering Tool courses are for MAVT-Bachelor students only. | W | 0.4 credits | 1K | M. Schwerhoff | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides an introduction to parallel and concurrent programming, using C++. Basic challenges and concepts will be introduced and illustrated, and applied by students in small projects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Students develop a basic understanding of the advantages and pitfalls of concurrency, and gain an overview of the field and its concepts. They learn how to solve small problems using concurrent programs. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course can only be passed if the projects are successfully implemented and submitted. If no or insufficient solutions are submitted, the course is considered failed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0003-00L | Workshop Training Placement of internships and request for recognition under www.mavt.ethz.ch/praxis. | O | 5 credits | external organisers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The main objective of the minimum five-week internship is to provide Bachelor’s students with practical experience in producing components as well as knowledge and understanding about materials and their machining and finishing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The main objective is to provide Bachelor’s students with practical experience in producing components as well as knowledge and understanding about materials and their machining and finishing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The minimum duration of the workshop training is five weeks. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() Students attend at least 10 Laboratory Practices during the 4th and 5th semester. 4 of them must be Physics laboratories. All laboratory works are graded "pass" or "fail". After completion of 10 laboratory training units, 2 credit points will be issued. Please register online at www.mavt.ethz.ch/praktika | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0029-10L | Laboratory Practice Enrollment is only possible under www.mavt.ethz.ch/praktika. No registration required via myStudies. | O | 2 credits | 4P | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Selected laboratory experiments in physics, mechanical and process engineering. With the Laboratory Training held during the fourth and fifth semester, the students learn how to handle and apply measurement methods and devices. Students are offered a diversified choice of laboratory experiments at least ten of which must be completed. Four of the chosen experiments must be in physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | With the Laboratory Training held during the fourth and fifth semester, the students learn how to handle and apply measurement methods and devices. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Der Link zur Website, welche alle Informationen für das Physikpraktikum bietet: https://ap.phys.ethz.ch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0001-10L | Bachelor's Thesis Only for Mechanical Engineering BSc, Programme Regulations 2010. Supervisor for the Bachelor's Thesis: - All D-MAVT professors (https://www.mavt.ethz.ch/the-department/people/professors.html) | W | 14 credits | 30D | Supervisors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The Bachelor's Thesis is the culmination of the program. The thesis corresponds to a work load of 420 hours and can be done in part- or full-time. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The students develop, enhance and demonstrate their methodological abilities to independently tackle and solve a given research problem. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The topics for the bachelor's thesis are published by the professorship or they can be set in consultation between the professors and the students. Thesis projects in cooperation with the industry are also possible. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The Bachelor's Thesis can be only started when the First Year Examinations, the Additional First Year Courses, the Examination Block 1 and 2 are passed. It is insistently recommended for students to only begin the Bachelor's Thesis if 150 credit points have been achieved. The declaration of originality is an integral part of the Bachelor's Thesis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-3630-00L | Bachelor's Thesis (Focus Specialization Management, Technology and Economics) ![]() Only for Mechanical Engineering BSc, Programme Regulations 2010. Supervisor for the Bachelor's Thesis: All D-MTEC professors (https://www.mtec.ethz.ch/people/professors.html) | W | 14 credits | 30D | Professors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The Bachelor's Thesis is the culmination of the program. The thesis corresponds to a work load of 420 hours and can be done in part- or full-time. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | The students develop, enhance and demonstrate their methodological abilities to independently tackle and solve a given research problem. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The topics for the bachelor's thesis are defined by the professorship or can be set in consultation between the professors and the students. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The Bachelor's Thesis can be only started when the First Year Examinations, the Additional First Year Courses, the Examination Block 1 and 2 are passed. Exclusively D-MAVT students who have enrolled for the Focus Specialization Management, Technology and Economy are eligible for this type of Bachelor's Thesis. It is strongly recommended for students to only begin the Bachelor's Thesis if 150 credit points have been achieved. The declaration of originality is an integral part of the Bachelor's Thesis |