Suchergebnis: Katalogdaten im Herbstsemester 2017

MAS in Medizinphysik Information
Obligatorische Fächer (für beide Fachrichtungen)
NummerTitelTypECTSUmfangDozierende
465-0957-00LAnatomy and Physiology for Medical Physicists I
Findet dieses Semester nicht statt.
O2 KP2V
KurzbeschreibungIntroduction to structure and function of the human body. The lectures will be based on current clinical practices in Radiology, Neuroradiology and Nuclear Medicine.
LernzielPhysiological and anatomical knowledge of the human body to ensure the correct understanding of basic concepts and to facilitate the collaboration of medical physicists and other health professionals.
Inhalt'Anatomy and physiology for medical physicists I & II' provides insights into structure and function of the human body. The content is presented in an accessible manner targeted to physicist working in a medical environment. The lectures will be based on current clinical practices in Radiology, Neuroradiology and Nuclear Medicine. After an introduction to cells and tissues the following systems will be addressed: 1) Support & Movement (musculoskeletal system, biomechanics); 2) Neuroscience (central and peripheral nervous system); 3) Auto-regulation (endocrine system) & Internal Transport (blood & cardiovascular system); 4) Environmental Exchange (respiratory, urinary, digestive & reproductive system).
465-0953-00LBiostatistics
Findet dieses Semester nicht statt.
O4 KP2V + 1U
KurzbeschreibungDer Kurs behandelt einfache quantitative und graphische als auch komplexere Methoden der Biostatistik. Inhalt: Deskriptive Statistik, Wahrscheinlichkeitsrechnung und Versuchsplanung, Prüfung von Hypothesen, Konfidenzintervalle, Korrelation, einfache und multiple lineare Regression, Klassifikation und Prognose, Diagnostische Tests, Bestimmung der Zuverlässigkeit von Messungen
Lernziel
227-0385-10LBiomedical ImagingO6 KP5GS. Kozerke, K. P. Prüssmann
KurzbeschreibungIntroduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques.
LernzielTo understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts.
Inhalt- X-ray imaging
- Computed tomography
- Single photon emission tomography
- Positron emission tomography
- Magnetic resonance imaging
- Ultrasound/Doppler imaging
SkriptLecture notes and handouts
LiteraturWebb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011
Voraussetzungen / BesonderesAnalysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming
465-0966-00LPhysics in Radiodiagnostic and Nuclear Medicine
Findet dieses Semester nicht statt.
O2 KP3G
KurzbeschreibungThe course is dedicated to introduce MAS students from Medical Physics to the field of radiodiagnostic and nuclear medicine. Dedicated practicals will illustrate the theory with an emphasis on the relationship between dose and image quality as well as the security problems related to the work with radiations.
LernzielThis 1-week theory and practical class offers the possibility to enjoy a variety of research and clinical areas in diagnostic and nuclear medicine. It gives insight into practical concepts and techniques that are discussed thoroughly as the class is performed within actual laboratories with real radiation sources.
InhaltThe course starts with the physical basis of radiography (from X-ray production to image detectors) and continues with the basic parameters of image quality in radiography (contrast, resolution, noise) and their measurement methods. Specific applications of radiation diagnostic are then considered separately.
The physics of fluoroscopy and mammography is presented with emphasis on the type of detectors. Computer tomography starts from mono- to multi-detector row technology and finishes with the dose indicators and the impacts of acquisition parameters on patient dose.
Nuclear medicine is approached through the production and labeling of radiopharmaceuticals before explaining the aspects related to quality control like the stability of the compounds, nuclide- and radionuclide purity as well as apyrogeneicity and sterility.
Imaging aspects of nuclear medicine are treated in details for SPECT and PET through the instrumentation, the reconstruction algorithms and the corresponding image quality.
Finally, the aspects related to patient dose and radiation protection of the personnel are considered separately for diagnostic radiology and nuclear medicine. The general frameworks of external as well as internal irradiation are presented and practical examples of dose calculations are explained.
Fachrichtung: Strahlentherapie
Kernfächer
NummerTitelTypECTSUmfangDozierende
402-0341-00LMedical Physics IO6 KP2V + 1UP. Manser
KurzbeschreibungIntroduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations.
LernzielUnderstanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society.
InhaltThe lecture is covering the basic principles of ionzing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the excercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelarator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiolgoy, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications.
SkriptA script will be provided.
227-0943-00LRadiobiologyO2 KP2VM. Pruschy
KurzbeschreibungThe purpose of this course is to impart basic knowledge in radiobiology in order to handle ionizing radiation and to provide a basis for predicting the radiation risk.
LernzielBy the end of this course the participants will be able to:
a) interpret the 5 Rs of radiation oncology in the context of the hallmarks of cancer
b) understand factors which underpin the differing radiosensitivities of different tumors
c) follow rational strategies for combined treatment modalities of ionizing radiation with targeted agents
d) understand differences in the radiation response of normal tissue versus tumor tissue
e) understand different treatment responses of the tumor and the normal tissue to differential clinical-related parameters of radiotherapy (dose rate, LET etc.).
InhaltEinführung in die Strahlenbiologie ionisierender Strahlen: Allgemeine Grundlagen und Begriffsbestimmungen; Mechanismen der biologischen Strahlenwirkung; Strahlenwirkung auf Zellen, Gewebe und Organe; Modifikation der biologischen Strahlenwirkung; Strahlenzytogenetik: Chromosomenveränderungen, DNA-Defekte, Reparaturprozesse; Molekulare Strahlenbiologie: Bedeutung inter- und intrazellulärer Signalübermittlungsprozesse, Apoptose, Zellzyklus-Checkpoints; Strahlenrisiko: Strahlensyndrome, Krebsinduktion, Mutationsauslösung, pränatale Strahlenwirkung; Strahlenbiologische Grundlagen des Strahlenschutzes; Nutzen-Risiko-Abwägungen bei der medizinischen Strahlenanwendung; Prädiktive strahlenbiologische Methoden zur Optimierung der therapeutischen Strahlenanwendung.
SkriptBeilagen mit zusammenfassenden Texten, Tabellen, Bild- und Grafikdarstellungen werden abgegeben
LiteraturLiteraturliste wird abgegeben.
Für NDS-Absolventen empfohlen: Hall EJ; Giacchia A: Radiobiology for the Radiologist, 7th Edition, 2011
Voraussetzungen / BesonderesThe former number of this course unit is 465-0951-00L.
Praktika
NummerTitelTypECTSUmfangDozierende
465-0956-00LDosimetrie Belegung eingeschränkt - Details anzeigen
Nur für MAS in Medizinphysik
O4 KP6GM. K. Fix, B. Isaak, M. A. Malthaner, P. Manser, M. Sassowsky, D. Terribilini
KurzbeschreibungDosimetrie in der Strahlentherapie. Planung und Durchführung einer perkutanen Strahlenexposition an einem anthropomorphen Phantom. Überprüfung der resultierenden Dosisverteilungen.
LernzielPraktische Umsetzung der Lerninhalte der Vorlesungen Medizinphysik I & II bezüglich Dosimetrie bei perkutanen Strahlenexpositinen
InhaltDosimetrie in der Strahlentherapie. Planung und Durchführung einer perkutanen Strahlenexposition an einem anthropomorphen Phantom. Überprüfung der resultierenden Dosisverteilungen.
SkriptDie Kursunterlagen werden im Blockkurs abgegeben.
Voraussetzungen / BesonderesVoraussetzung: Besuch der Vorlesung Medizinische Physik I
Fachrichtung: Allg. Medizinphysik und Biomedizinisches Ingenieurwesen
Vertiefung Radiation Therapy
Kernfächer
NummerTitelTypECTSUmfangDozierende
402-0341-00LMedical Physics IW6 KP2V + 1UP. Manser
KurzbeschreibungIntroduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations.
LernzielUnderstanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society.
InhaltThe lecture is covering the basic principles of ionzing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the excercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelarator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiolgoy, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications.
SkriptA script will be provided.
227-0943-00LRadiobiologyW2 KP2VM. Pruschy
KurzbeschreibungThe purpose of this course is to impart basic knowledge in radiobiology in order to handle ionizing radiation and to provide a basis for predicting the radiation risk.
LernzielBy the end of this course the participants will be able to:
a) interpret the 5 Rs of radiation oncology in the context of the hallmarks of cancer
b) understand factors which underpin the differing radiosensitivities of different tumors
c) follow rational strategies for combined treatment modalities of ionizing radiation with targeted agents
d) understand differences in the radiation response of normal tissue versus tumor tissue
e) understand different treatment responses of the tumor and the normal tissue to differential clinical-related parameters of radiotherapy (dose rate, LET etc.).
InhaltEinführung in die Strahlenbiologie ionisierender Strahlen: Allgemeine Grundlagen und Begriffsbestimmungen; Mechanismen der biologischen Strahlenwirkung; Strahlenwirkung auf Zellen, Gewebe und Organe; Modifikation der biologischen Strahlenwirkung; Strahlenzytogenetik: Chromosomenveränderungen, DNA-Defekte, Reparaturprozesse; Molekulare Strahlenbiologie: Bedeutung inter- und intrazellulärer Signalübermittlungsprozesse, Apoptose, Zellzyklus-Checkpoints; Strahlenrisiko: Strahlensyndrome, Krebsinduktion, Mutationsauslösung, pränatale Strahlenwirkung; Strahlenbiologische Grundlagen des Strahlenschutzes; Nutzen-Risiko-Abwägungen bei der medizinischen Strahlenanwendung; Prädiktive strahlenbiologische Methoden zur Optimierung der therapeutischen Strahlenanwendung.
SkriptBeilagen mit zusammenfassenden Texten, Tabellen, Bild- und Grafikdarstellungen werden abgegeben
LiteraturLiteraturliste wird abgegeben.
Für NDS-Absolventen empfohlen: Hall EJ; Giacchia A: Radiobiology for the Radiologist, 7th Edition, 2011
Voraussetzungen / BesonderesThe former number of this course unit is 465-0951-00L.
Praktika
NummerTitelTypECTSUmfangDozierende
465-0956-00LDosimetrie Belegung eingeschränkt - Details anzeigen
Nur für MAS in Medizinphysik
W4 KP6GM. K. Fix, B. Isaak, M. A. Malthaner, P. Manser, M. Sassowsky, D. Terribilini
KurzbeschreibungDosimetrie in der Strahlentherapie. Planung und Durchführung einer perkutanen Strahlenexposition an einem anthropomorphen Phantom. Überprüfung der resultierenden Dosisverteilungen.
LernzielPraktische Umsetzung der Lerninhalte der Vorlesungen Medizinphysik I & II bezüglich Dosimetrie bei perkutanen Strahlenexpositinen
InhaltDosimetrie in der Strahlentherapie. Planung und Durchführung einer perkutanen Strahlenexposition an einem anthropomorphen Phantom. Überprüfung der resultierenden Dosisverteilungen.
SkriptDie Kursunterlagen werden im Blockkurs abgegeben.
Voraussetzungen / BesonderesVoraussetzung: Besuch der Vorlesung Medizinische Physik I
465-0800-00LPractical Work Belegung eingeschränkt - Details anzeigen
Nur für MAS in Medizinphysik
W4 KPexterne Veranstalter
KurzbeschreibungThe practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.
LernzielThe practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.
Wahlfächer
NummerTitelTypECTSUmfangDozierende
227-0965-00LMicro and Nano-Tomography of Biological TissuesW4 KP3GM. Stampanoni, P. A. Kaestner
KurzbeschreibungEinführung in die physikalischen und technischen Grundkenntnisse der tomographischen Röntgenmikroskopie. Verschiedene Röntgenbasierten-Abbildungsmechanismen (Absorptions-, Phasen- und Dunkelfeld-Kontrast) werden erklärt und deren Einsatz in der aktuellen Forschung vorgestellt, insbesondere in der Biologie. Die quantitative Auswertung tomographische Datensätzen wird ausführlich beigebracht.
LernzielEinführung in die Grundlagen der Röntgentomographie auf der Mikrometer- und Nanometerskala, sowie in die entsprechenden Bildbearbeitungs- und Quantifizierungsmethoden, unter besonderer Berücksichtigung von biologischen Anwendungen.
InhaltSynchrotron basierte Röntgenmikro- und Nanotomographie ist heutzutage eine leistungsfähige Technik für die hochaufgelösten zerstörungsfreien Untersuchungen einer Vielfalt von Materialien. Die aussergewöhnlichen Stärke und Kohärenz der Strahlung einer Synchrotronquelle der dritten Generation erlauben quantitative drei-dimensionale Aufnahmen auf der Mikro- und Nanometerskala und erweitern die klassischen Absorption-basierten Verfahrensweisen auf die kontrastreicheren kantenverstärkten und phasenempfindlichen Methoden, die für die Analyse von biologischen Proben besonders geeignet sind.

Die Vorlesung umfasst eine allgemeine Einführung in die Grundsätze der Röntgentomographie, von der Bildentstehung bis zur 3D Bildrekonstruktion. Sie liefert die physikalischen und technischen Grundkentnisse über die bildgebenden Synchrotronstrahllinien, vertieft die neusten Phasenkontrastmethoden und beschreibt die ersten Anwendungen nanotomographischer Röntgenuntersuchungen.

Schliesslich liefert der Kurs den notwendigen Hintergrund, um die quantitative Auswertung tomographischer Daten zu verstehen, von der grundlegenden Bildanalyse bis zur komplexen morphometrischen Berechnung und zur 3D-Visualisierung, unter besonderer Berücksichtigung von biomedizinischen Anwendungen.
SkriptOnline verfügbar
LiteraturWird in der Vorlesung angegeben.
402-0674-00LPhysics in Medical Research: From Atoms to Cells Information W6 KP2V + 1UB. K. R. Müller
KurzbeschreibungScanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells.
LernzielThe lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. These characterization techniques are vital for optimizing the preparation of medical implants and the determination of tissue's anisotropies within the human body.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

3D scaffolds are important for tissue augmentation and engineering. Design, preparation methods, and characterization of these highly porous 3D microstructures are also presented.

Visiting clinical research in a leading university hospital will show the usefulness of the lecture series.
Vertiefung Biomechanics
Kernfächer
NummerTitelTypECTSUmfangDozierende
227-0386-00LBiomedical Engineering Information W4 KP3GJ. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong
KurzbeschreibungIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.
LernzielIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.
InhaltIntroduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism.
Practical and theoretical exercises in small groups in the laboratory.
SkriptIntroduction to Biomedical Engineering
by Enderle, Banchard, and Bronzino

AND

https://www1.ethz.ch/lbb/Education/BME
227-0965-00LMicro and Nano-Tomography of Biological TissuesW4 KP3GM. Stampanoni, P. A. Kaestner
KurzbeschreibungEinführung in die physikalischen und technischen Grundkenntnisse der tomographischen Röntgenmikroskopie. Verschiedene Röntgenbasierten-Abbildungsmechanismen (Absorptions-, Phasen- und Dunkelfeld-Kontrast) werden erklärt und deren Einsatz in der aktuellen Forschung vorgestellt, insbesondere in der Biologie. Die quantitative Auswertung tomographische Datensätzen wird ausführlich beigebracht.
LernzielEinführung in die Grundlagen der Röntgentomographie auf der Mikrometer- und Nanometerskala, sowie in die entsprechenden Bildbearbeitungs- und Quantifizierungsmethoden, unter besonderer Berücksichtigung von biologischen Anwendungen.
InhaltSynchrotron basierte Röntgenmikro- und Nanotomographie ist heutzutage eine leistungsfähige Technik für die hochaufgelösten zerstörungsfreien Untersuchungen einer Vielfalt von Materialien. Die aussergewöhnlichen Stärke und Kohärenz der Strahlung einer Synchrotronquelle der dritten Generation erlauben quantitative drei-dimensionale Aufnahmen auf der Mikro- und Nanometerskala und erweitern die klassischen Absorption-basierten Verfahrensweisen auf die kontrastreicheren kantenverstärkten und phasenempfindlichen Methoden, die für die Analyse von biologischen Proben besonders geeignet sind.

Die Vorlesung umfasst eine allgemeine Einführung in die Grundsätze der Röntgentomographie, von der Bildentstehung bis zur 3D Bildrekonstruktion. Sie liefert die physikalischen und technischen Grundkentnisse über die bildgebenden Synchrotronstrahllinien, vertieft die neusten Phasenkontrastmethoden und beschreibt die ersten Anwendungen nanotomographischer Röntgenuntersuchungen.

Schliesslich liefert der Kurs den notwendigen Hintergrund, um die quantitative Auswertung tomographischer Daten zu verstehen, von der grundlegenden Bildanalyse bis zur komplexen morphometrischen Berechnung und zur 3D-Visualisierung, unter besonderer Berücksichtigung von biomedizinischen Anwendungen.
SkriptOnline verfügbar
LiteraturWird in der Vorlesung angegeben.
376-1651-00LClinical and Movement BiomechanicsW4 KP3GS. Lorenzetti, R. List, N. Singh
KurzbeschreibungMeasurement and modeling of the human movement during daily activities and in a clinical environment.
LernzielThe students are able to analyse the human movement from a technical point of view, to process the data and perform modeling with a focus towards clinical application.
InhaltThis course includes study design, measurement techniques, clinical testing, accessing movement data and anysis as well as modeling with regards to human movement.
376-1985-00LTrauma BiomechanicsW4 KP2V + 1UK.‑U. Schmitt, M. H. Muser
KurzbeschreibungTrauma-Biomechanik ist ein interdiszipliäres Fach, das sich mit der Biomechanik von Verletzungen sowie Möglichkeiten zur Prävention von Verletzungen beschäftigt. Die Vorlesung stellt die Grundlagen der Trauma-Biomechanik dar.
LernzielVermittlung von Grundlagen der Trauma-Biomechanik.
InhaltDie Vorlesung beschäftigt sich mit Verletzungen des menschlichen Körpers und den zugrunde liegenden Verletzungsmechanismen. Hierbei bilden Verletzungen, die im Strassenverkehr erlitten werden, den Schwerpunkt. Weitere Vorlesungsthemen sind: Crash-Tests und die dazugehörige Messtechnik (z. B. Dummys), sowie aktuelle Themen der Trauma-Biomechanik.
SkriptUnterlagen werden zur Verfügung gestellt.
LiteraturSchmitt K-U, Niederer P, M. Muser, Walz F: "Trauma Biomechanics - An Introduction to Injury Biomechanics" bzw. "Trauma-Biomechanik - Einführung in die Biomechanik von Verletzungen", beide Springer Verlag.
Praktika
NummerTitelTypECTSUmfangDozierende
465-0800-00LPractical Work Belegung eingeschränkt - Details anzeigen
Nur für MAS in Medizinphysik
O4 KPexterne Veranstalter
KurzbeschreibungThe practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.
LernzielThe practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.
Wahlfächer
NummerTitelTypECTSUmfangDozierende
151-0255-00LEnergy Conversion and Transport in BiosystemsW4 KP2V + 1UA. Ferrari
KurzbeschreibungTheorie und Anwendung von Thermodynamik und Energieerhaltung in biologischen Systemen mit Schwerpunkt auf Zellebene.
LernzielTheorie und Anwendung von Energieerhaltung auf Zellebene. Verständnis für die grundlegenden Stofftransport-Kreisläufe in menschlichen Zellen und die Mechanismen, welche diese Kreisläufe beeinflussen. Parallelen zu anderen Gebieten im Ingenieurswesen erkennen. Wärme- und Massentransport Prozesse in der Zelle, Kraft Entwicklung der Zelle, und die Verbindung zu modernen biomedizinischen Technologien.
InhaltMassentransportmodelle für den Transport von chemischen Spezies in der menschlichen Zelle. Organisation und Funktion der Zellmembran und des Zytoskeletts. Die Rolle molekularer Motoren in der Kraftentwicklung der Zelle und deren Funktion in der Fortbewegung der Zelle. Beschreibung der Funktionsweise dieser Systeme sowie der experimentellen Analyse und Simulationen um sie besser zu verstehen. Einführung in den Zell-Metabolismus, Zell-Energietransport und die Zelluläre Thermodynamik.
SkriptKursmaterial wird in Form von Hand-outs verteilt.
LiteraturNotizen sowie Referenzen aus der Vorlesung.
151-0524-00LContinuum Mechanics IW4 KP2V + 1UE. Mazza
KurzbeschreibungKonstitutive Gleichungen für strukturmechanische Berechnungen werden behandelt. Dies beinhaltet anisotrope lineare Elastizität, lineare Viskoelastizität, Plastizität und Viscoplastizität. Es werden die Grundlagen der Mikro-Makro Modellierung und der Laminattheorie eingeführt. Die theoretischen Ausführungen werden durch Beispiele aus Ingenieuranwendungen und Experimente ergänzt.
LernzielBehandlung von Grundlagen zur Lösung kontinuumsmechanischer Probleme der Anwendung, mit besonderem Fokus auf konstitutive Gesetze.
InhaltAnisotrope Elastizität, Linearelastisches und linearviskoses Stoffverhalten, Viskoelastizität, mikro-makro Modellierung, Laminattheorie, Plastizität, Viscoplastizität, Beispiele aus der Ingenieuranwendung, Vergleich mit Experimenten.
Skriptja
151-0604-00LMicrorobotics Information W4 KP3GB. Nelson
KurzbeschreibungMicrorobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course students are expected to submit assignments. The course concludes with an end-of-semester examination.
LernzielThe objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.
InhaltMain topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots
SkriptThe powerpoint slides presented in the lectures will be mad available as pdf files. Several readings will also be made available electronically.
Voraussetzungen / BesonderesThe lecture will be taught in English.
263-5001-00LIntroduction to Finite Elements and Sparse Linear System Solving Information W4 KP2V + 1UP. Arbenz
KurzbeschreibungThe finite element (FE) method is the method of choice for (approximately) solving partial differential equations on complicated domains. In the first third of the lecture, we give an introduction to the method. The rest of the lecture will be devoted to methods for solving the large sparse linear systems of equation that a typical for the FE method. We will consider direct and iterative methods.
LernzielStudents will know the most important direct and iterative solvers for sparse linear systems. They will be able to determine which solver to choose in particular situations.
InhaltI. THE FINITE ELEMENT METHOD

(1) Introduction, model problems.

(2) 1D problems. Piecewise polynomials in 1D.

(3) 2D problems. Triangulations. Piecewise polynomials in 2D.

(4) Variational formulations. Galerkin finite element method.

(5) Implementation aspects.


II. DIRECT SOLUTION METHODS

(6) LU and Cholesky decomposition.

(7) Sparse matrices.

(8) Fill-reducing orderings.


III. ITERATIVE SOLUTION METHODS

(9) Stationary iterative methods, preconditioning.

(10) Preconditioned conjugate gradient method (PCG).

(11) Incomplete factorization preconditioning.

(12) Multigrid preconditioning.

(13) Nonsymmetric problems (GMRES, BiCGstab).

(14) Indefinite problems (SYMMLQ, MINRES).
Literatur[1] M. G. Larson, F. Bengzon: The Finite Element Method: Theory, Implementation, and Applications. Springer, Heidelberg, 2013.

[2] H. Elman, D. Sylvester, A. Wathen: Finite elements and fast iterative solvers. OUP, Oxford, 2005.

[3] Y. Saad: Iterative methods for sparse linear systems (2nd ed.). SIAM, Philadelphia, 2003.

[4] T. Davis: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, 2006.

[5] H.R. Schwarz: Die Methode der finiten Elemente (3rd ed.). Teubner, Stuttgart, 1991.
Voraussetzungen / BesonderesPrerequisites: Linear Algebra, Analysis, Computational Science.
The exercises are made with Matlab.
376-2017-00LBiomechanik von Sportverletzungen und RehabilitationW3 KP2VK.‑U. Schmitt, J. Goldhahn
KurzbeschreibungDie Veranstaltung vermittelt die Grundlagen der Verletzungsbiomechanik. Sportverletzungen und deren Rehabilitation bilden dabei den Schwerpunkt der Vorlesung.
LernzielIn dieser Veranstaltung sollen Sie Grundlagen der Traumabiomechanik erlernen. Anhand von Beispielen aus dem Sport lernen Sie verschiedene Mechanismen, die zu Verletzungen des menschlichen Körpers führen können, kennen. Sie sollen ein Verständnis für das Entstehen von Verletzungen entwickeln, das Sie in die Lage versetzt Verletzungspotentiale abzuschätzen und präventive Massnahmen zu entwickeln.
InhaltDie Veranstaltung beschäftigt sich mit den Grundlagen der Verletzungsmechanik und der Rehabilitation. Es wird untersucht, wie Verletzungen entstehen und wie sie verhindert werden können. Die Vorlesung konzentriert sich dabei auf Verletzungen, die im Sport erlitten werden.
SkriptUnterlagen werden zur Verfügung gestellt.
LiteraturSchmitt K-U, Niederer P, M. Muser, Walz F: "Trauma Biomechanics - An Introduction to Injury Biomechanics" bzw. "Trauma-Biomechanik - Einführung in die Biomechanik von Verletzungen", beide Springer Verlag
Voraussetzungen / BesonderesDie Mitarbeit an einer Gruppenarbeit ist fester Bestandteil der Veranstaltung. Die Gruppenarbeit wird benotet und zählt somit zur Gesamtnote der Vorlesung hinzu. Nähere Informationen werden in der ersten Vorlesung gegeben.
Vertiefung Bioimaging
Kernfächer
NummerTitelTypECTSUmfangDozierende
227-0386-00LBiomedical Engineering Information W4 KP3GJ. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong
KurzbeschreibungIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.
LernzielIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.
InhaltIntroduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism.
Practical and theoretical exercises in small groups in the laboratory.
SkriptIntroduction to Biomedical Engineering
by Enderle, Banchard, and Bronzino

AND

https://www1.ethz.ch/lbb/Education/BME
227-0447-00LImage Analysis and Computer Vision Information W6 KP3V + 1UL. Van Gool, O. Göksel, E. Konukoglu
KurzbeschreibungLight and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition.
LernzielOverview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises.
InhaltThe first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed.
SkriptCourse material Script, computer demonstrations, exercises and problem solutions
Voraussetzungen / BesonderesPrerequisites:
Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C.
The course language is English.
Praktika
NummerTitelTypECTSUmfangDozierende
465-0800-00LPractical Work Belegung eingeschränkt - Details anzeigen
Nur für MAS in Medizinphysik
O4 KPexterne Veranstalter
KurzbeschreibungThe practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.
LernzielThe practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.
Wahlfächer
NummerTitelTypECTSUmfangDozierende
151-0605-00LNanosystemsW4 KP4GA. Stemmer
KurzbeschreibungFrom atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.
Intermolecular forces, their macroscopic manifestations, and ways to control such interactions.
Self-assembly and directed assembly of 2D and 3D structures.
Special emphasis on the emerging field of molecular electronic devices.
LernzielFamiliarize students with basic science and engineering principles governing the nano domain.
InhaltThe course addresses basic science and engineering principles ruling the nano domain. We particularly work out the links between topics that are traditionally taught separately. Familiarity with basic concepts of quantum mechanics is expected.

Special emphasis is placed on the emerging field of molecular electronic devices, their working principles, applications, and how they may be assembled.

Topics are treated in 2 blocks:

(I) From Quantum to Continuum
From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles.

(II) Interaction Forces on the Micro and Nano Scale
Intermolecular forces, their macroscopic manifestations, and ways to control such interactions.
Self-assembly and directed assembly of 2D and 3D structures.
Literatur- Kuhn, Hans; Försterling, H.D.: Principles of Physical Chemistry. Understanding Molecules, Molecular Assemblies, Supramolecular Machines. 1999, Wiley, ISBN: 0-471-95902-2
- Chen, Gang: Nanoscale Energy Transport and Conversion. 2005, Oxford University Press, ISBN: 978-0-19-515942-4
- Ouisse, Thierry: Electron Transport in Nanostructures and Mesoscopic Devices. 2008, Wiley, ISBN: 978-1-84821-050-9
- Wolf, Edward L.: Nanophysics and Nanotechnology. 2004, Wiley-VCH, ISBN: 3-527-40407-4

- Israelachvili, Jacob N.: Intermolecular and Surface Forces. 2nd ed., 1992, Academic Press,ISBN: 0-12-375181-0
- Evans, D.F.; Wennerstrom, H.: The Colloidal Domain. Where Physics, Chemistry, Biology, and Technology Meet. Advances in Interfacial Engineering Series. 2nd ed., 1999, Wiley, ISBN: 0-471-24247-0
- Hunter, Robert J.: Foundations of Colloid Science. 2nd ed., 2001, Oxford, ISBN: 0-19-850502-7
Voraussetzungen / BesonderesCourse format:

Lectures and Mini-Review presentations: Thursday 10-13, ML F 36

Homework: Mini-Reviews
Each student selects a paper (list distributed in class) and expands the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper.
227-0391-00LMedical Image Analysis
Findet dieses Semester nicht statt.
W3 KP2GE. Konukoglu
KurzbeschreibungIt is the objective of this lecture to introduce the basic concepts used
in Medical Image Analysis. In particular the lecture focuses on shape
representation schemes, segmentation techniques, and the various image registration methods commonly used in Medical Image Analysis applications.
LernzielThis lecture aims to give an overview of the basic concepts of Medical Image Analysis and its application areas.
Voraussetzungen / BesonderesBasic knowledge of computer vision would be helpful.
227-0965-00LMicro and Nano-Tomography of Biological TissuesW4 KP3GM. Stampanoni, P. A. Kaestner
KurzbeschreibungEinführung in die physikalischen und technischen Grundkenntnisse der tomographischen Röntgenmikroskopie. Verschiedene Röntgenbasierten-Abbildungsmechanismen (Absorptions-, Phasen- und Dunkelfeld-Kontrast) werden erklärt und deren Einsatz in der aktuellen Forschung vorgestellt, insbesondere in der Biologie. Die quantitative Auswertung tomographische Datensätzen wird ausführlich beigebracht.
LernzielEinführung in die Grundlagen der Röntgentomographie auf der Mikrometer- und Nanometerskala, sowie in die entsprechenden Bildbearbeitungs- und Quantifizierungsmethoden, unter besonderer Berücksichtigung von biologischen Anwendungen.
InhaltSynchrotron basierte Röntgenmikro- und Nanotomographie ist heutzutage eine leistungsfähige Technik für die hochaufgelösten zerstörungsfreien Untersuchungen einer Vielfalt von Materialien. Die aussergewöhnlichen Stärke und Kohärenz der Strahlung einer Synchrotronquelle der dritten Generation erlauben quantitative drei-dimensionale Aufnahmen auf der Mikro- und Nanometerskala und erweitern die klassischen Absorption-basierten Verfahrensweisen auf die kontrastreicheren kantenverstärkten und phasenempfindlichen Methoden, die für die Analyse von biologischen Proben besonders geeignet sind.

Die Vorlesung umfasst eine allgemeine Einführung in die Grundsätze der Röntgentomographie, von der Bildentstehung bis zur 3D Bildrekonstruktion. Sie liefert die physikalischen und technischen Grundkentnisse über die bildgebenden Synchrotronstrahllinien, vertieft die neusten Phasenkontrastmethoden und beschreibt die ersten Anwendungen nanotomographischer Röntgenuntersuchungen.

Schliesslich liefert der Kurs den notwendigen Hintergrund, um die quantitative Auswertung tomographischer Daten zu verstehen, von der grundlegenden Bildanalyse bis zur komplexen morphometrischen Berechnung und zur 3D-Visualisierung, unter besonderer Berücksichtigung von biomedizinischen Anwendungen.
SkriptOnline verfügbar
LiteraturWird in der Vorlesung angegeben.
227-0967-00LComputational Neuroimaging Clinic Information
Voraussetzung: Erfolgreiche Abschluss der Lehrveranstaltung "Methods & Models for fMRI Data Analysis" (227-0969-00L).
W3 KP2VK. Stephan
KurzbeschreibungThis seminar teaches problem solving skills for computational neuroimaging, based on joint analyses of neuroimaging and behavioural data. It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g. mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data.
Lernziel1. Consolidation of theoretical knowledge (obtained in the following courses: 'Methods & models for fMRI data analysis', 'Translational Neuromodeling', 'Computational Psychiatry') in a practical setting.
2. Acquisition of practical problem solving strategies for computational modeling of neuroimaging data.
InhaltThis seminar teaches problem solving skills for computational neuroimaging, based on joint analyses of neuroimaging and behavioural data. It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g. mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data.
Voraussetzungen / BesonderesThe participants are expected to have successfully completed at least one of the following courses:
'Methods & models for fMRI data analysis',
'Translational Neuromodeling',
'Computational Psychiatry'
227-0969-00LMethods & Models for fMRI Data Analysis Information W6 KP4VK. Stephan
KurzbeschreibungThis course teaches methods and models for fMRI data analysis, covering all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, statistical inference, multiple comparison corrections, event-related designs, and Dynamic Causal Modelling (DCM), a Bayesian framework for identification of nonlinear neuronal systems from neurophysiological data.
LernzielTo obtain in-depth knowledge of the theoretical foundations of SPM
and DCM and of their application to empirical fMRI data.
InhaltThis course teaches state-of-the-art methods and models for fMRI data analysis. It covers all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, frequentist and Bayesian inference, multiple comparison corrections, and event-related designs, and Dynamic Causal Modelling (DCM), a Bayesian framework for identification of nonlinear neuronal systems from neurophysiological data. A particular emphasis of the course will be on methodological questions arising in the context of studies in psychiatry, neurology and neuroeconomics.
376-1279-00LVirtual Reality in Medicine Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
W3 KP2VR. Riener
KurzbeschreibungVirtual Reality has the potential to support medical training and therapy. This lecture will derive the technical principles of multi-modal (audiovisual, haptic, tactile etc.) input devices, displays and rendering techniques. Examples are presented in the fields of surgical training, intra-operative augmentation, and rehabilitation. The lecture is accompanied by practical courses and excursions.
LernzielProvide theoretical and practical knowledge of new principles and applications of multi-modal simulation and interface technologies in medical education, therapy, and rehabilitation.
InhaltVirtual Reality has the potential to provide descriptive and practical information for medical training and therapy while relieving the patient and/or the physician. Multi-modal interactions between the user and the virtual environment facilitate the generation of high-fidelity sensory impressions, by using not only visual and auditory modalities, but also kinesthetic, tactile, and even olfactory feedback. On the basis of the existing physiological constraints, this lecture will derive the technical requirements and principles of multi-modal input devices, displays, and rendering techniques. Several examples are presented that are currently being developed or already applied for surgical training, intra-operative augmentation, and rehabilitation. The lecture will be accompanied by several practical courses on graphical and haptic display devices as well as excursions to facilities equipped with large-scale VR equipment.

Target Group:
Students of higher semesters and PhD students of
- D-HEST, D-MAVT, D-ITET, D-INFK, D-PHYS
- Robotics, Systems and Control Master
- Biomedical Engineering/Movement Science and Sport
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome!
LiteraturBook: Virtual Reality in Medicine. Riener, Robert; Harders, Matthias; 2012 Springer.
Voraussetzungen / BesonderesThe course language is English.
Basic experience in Information Technology and Computer Science will be of advantage
More details will be announced in the lecture.
402-0674-00LPhysics in Medical Research: From Atoms to Cells Information W6 KP2V + 1UB. K. R. Müller
KurzbeschreibungScanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells.
LernzielThe lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. These characterization techniques are vital for optimizing the preparation of medical implants and the determination of tissue's anisotropies within the human body.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

3D scaffolds are important for tissue augmentation and engineering. Design, preparation methods, and characterization of these highly porous 3D microstructures are also presented.

Visiting clinical research in a leading university hospital will show the usefulness of the lecture series.
Vertiefung Bioengineering
Kernfächer
NummerTitelTypECTSUmfangDozierende
227-0965-00LMicro and Nano-Tomography of Biological TissuesW4 KP3GM. Stampanoni, P. A. Kaestner
KurzbeschreibungEinführung in die physikalischen und technischen Grundkenntnisse der tomographischen Röntgenmikroskopie. Verschiedene Röntgenbasierten-Abbildungsmechanismen (Absorptions-, Phasen- und Dunkelfeld-Kontrast) werden erklärt und deren Einsatz in der aktuellen Forschung vorgestellt, insbesondere in der Biologie. Die quantitative Auswertung tomographische Datensätzen wird ausführlich beigebracht.
LernzielEinführung in die Grundlagen der Röntgentomographie auf der Mikrometer- und Nanometerskala, sowie in die entsprechenden Bildbearbeitungs- und Quantifizierungsmethoden, unter besonderer Berücksichtigung von biologischen Anwendungen.
InhaltSynchrotron basierte Röntgenmikro- und Nanotomographie ist heutzutage eine leistungsfähige Technik für die hochaufgelösten zerstörungsfreien Untersuchungen einer Vielfalt von Materialien. Die aussergewöhnlichen Stärke und Kohärenz der Strahlung einer Synchrotronquelle der dritten Generation erlauben quantitative drei-dimensionale Aufnahmen auf der Mikro- und Nanometerskala und erweitern die klassischen Absorption-basierten Verfahrensweisen auf die kontrastreicheren kantenverstärkten und phasenempfindlichen Methoden, die für die Analyse von biologischen Proben besonders geeignet sind.

Die Vorlesung umfasst eine allgemeine Einführung in die Grundsätze der Röntgentomographie, von der Bildentstehung bis zur 3D Bildrekonstruktion. Sie liefert die physikalischen und technischen Grundkentnisse über die bildgebenden Synchrotronstrahllinien, vertieft die neusten Phasenkontrastmethoden und beschreibt die ersten Anwendungen nanotomographischer Röntgenuntersuchungen.

Schliesslich liefert der Kurs den notwendigen Hintergrund, um die quantitative Auswertung tomographischer Daten zu verstehen, von der grundlegenden Bildanalyse bis zur komplexen morphometrischen Berechnung und zur 3D-Visualisierung, unter besonderer Berücksichtigung von biomedizinischen Anwendungen.
SkriptOnline verfügbar
LiteraturWird in der Vorlesung angegeben.
376-1103-00LFrontiers in NanotechnologyW4 KP4VV. Vogel, weitere Dozierende
KurzbeschreibungMany disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers.
LernzielBuilding upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.

The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently “sizzling” in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.
InhaltStarting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.
SkriptAll the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.
376-1714-00LBiocompatible MaterialsW4 KP3GK. Maniura, J. Möller, M. Zenobi-Wong
KurzbeschreibungIntroduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.
LernzielThe class consists of three parts:
1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
InhaltIntroduction into native and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering and drug delivery are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.
In addition, a link between academic research and industrial entrepreneurship is established by external guest speakers.
SkriptHandouts can be accessed online.
LiteraturLiteratur
Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013
Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011

(available online via ETH library)

Handouts provided during the classes and references therin.
636-0108-00LBiological Engineering and Biotechnology
Attention: This course was offered in previous semesters with the number: 636-0003-00L "Biological Engineering and Biotechnology". Students that already passed course 636-0003-00L cannot receive credits for course 636-0108-00L.
W4 KP3VM. Fussenegger
KurzbeschreibungBiological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.
LernzielBiological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.
Inhalt1. Insight Into The Mammalian Cell Cycle. Cycling, The Balance Between Proliferation and Cancer - Implications For Biopharmaceutical Manufacturing. 2. The Licence To Kill. Apoptosis Regulatory Networks - Engineering of Survival Pathways To Increase Robustness of Production Cell Lines. 3. Everything Under Control I. Regulated Transgene Expression in Mammalian Cells - Facts and Future. 4. Secretion Engineering. The Traffic Jam getting out of the Cell. 5. From Target To Market. An Antibody's Journey From Cell Culture to The Clinics. 6. Biology and Malign Applications. Do Life Sciences Enable the Development of Biological Weapons? 7. Functional Food. Enjoy your Meal! 8. Industrial Genomics. Getting a Systems View on Nutrition and Health - An Industrial Perspective. 9. IP Management - Food Technology. Protecting Your Knowledge For Business. 10. Biopharmaceutical Manufacturing I. Introduction to Process Development. 11. Biopharmaceutical Manufacturing II. Up- stream Development. 12. Biopharmaceutical Manufacturing III. Downstream Development. 13. Biopharmaceutical Manufacturing IV. Pharma Development.
SkriptHandout during the course.
Praktika
NummerTitelTypECTSUmfangDozierende
465-0800-00LPractical Work Belegung eingeschränkt - Details anzeigen
Nur für MAS in Medizinphysik
O4 KPexterne Veranstalter
KurzbeschreibungThe practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.
LernzielThe practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.
Wahlfächer
Von den beiden Lerneinheiten 376-1622-00L Practical Methods in Tissue Engineering (angeboten im Herbstsemester) und 376-1624-00L Practical Methods in Biofabrication (angeboten im Frühjahrssemester) dürfen nicht beide angerechnet werden.
NummerTitelTypECTSUmfangDozierende
151-0604-00LMicrorobotics Information W4 KP3GB. Nelson
KurzbeschreibungMicrorobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course students are expected to submit assignments. The course concludes with an end-of-semester examination.
LernzielThe objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.
InhaltMain topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots
SkriptThe powerpoint slides presented in the lectures will be mad available as pdf files. Several readings will also be made available electronically.
Voraussetzungen / BesonderesThe lecture will be taught in English.
227-0386-00LBiomedical Engineering Information W4 KP3GJ. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong
KurzbeschreibungIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.
LernzielIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.
InhaltIntroduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism.
Practical and theoretical exercises in small groups in the laboratory.
SkriptIntroduction to Biomedical Engineering
by Enderle, Banchard, and Bronzino

AND

https://www1.ethz.ch/lbb/Education/BME
327-1101-00LBiomineralization Information W2 KP2VK.‑H. Ernst
KurzbeschreibungThe course addresses undergraduate and graduate students interested in getting introduced into the basic concepts of biomineralization.
LernzielThe course aims to introduce the basic concepts of biomineralization and the underlying principles, such as supersaturation, nucleation and growth of minerals, the interaction of biomolecules with mineral surfaces, and cell biology of inorganic materials creation. An important part of this class is the independent study and the presentation of original literature from the field.
InhaltBiomineralization is a multidisciplinary field. Topics dealing with biology, molecular and cell biology, solid state physics, mineralogy, crystallography, organic and physical chemistry, biochemistry, dentistry, oceanography, geology, etc. are addressed. The course covers definition and general concepts of biomineralization (BM)/ types of biominerals and their function / crystal nucleation and growth / biological induction of BM / control of crystal morphology, habit, shape and orientation by organisms / strategies of compartmentalization / the interface between biomolecules (peptides, polysaccharides) and the mineral phase / modern experimental methods for studying BM phenomena / inter-, intra, extra- and epicellular BM / organic templates and matrices for BM / structure of bone, teeth (vertebrates and invertebrates) and mollusk shells / calcification / silification in diatoms, radiolaria and plants / calcium and iron storage / impact of BM on lithosphere and atmosphere/ evolution / taxonomy of organisms.

1. Introduction and overview
2. Biominerals and their functions
3. Chemical control of biomineralization
4. Control of morphology: Organic templates and additives
5. Modern methods of investigation of BM
6. BM in matrices: bone and nacre
7. Vertebrate teeth
8. Invertebrate teeth
9. BM within vesicles: calcite of coccoliths
10. Silica
11. Iron storage and mineralization
SkriptScript with more than 600 pages with many illustrations will be distributed free of charge.
Literatur1) S. Mann, Biomineralization, Oxford University Press, 2001, Oxford, New York
2) H. Lowenstam, S. Weiner, On Biomineralization, Oxford University Press, 1989, Oxford
3) P. M. Dove, J. J. DeYoreo, S. Weiner (Eds.) Biomineralization, Reviews in Mineralogoy & Geochemistry Vol. 54, 2003
Voraussetzungen / BesonderesNo special requirements are needed for attending. Basic knowledge in chemistry and cell biology is expected.
376-1622-00LPractical Methods in Tissue Engineering Belegung eingeschränkt - Details anzeigen
Number of participants limited to 16
W5 KP4PK. Würtz-Kozak, O. Krupkova, M. Zenobi-Wong
KurzbeschreibungThe goal of this course is to teach MSc students the necessary skills for doing research in the fields of tissue engineering and regenerative medicine.
LernzielPractical exercises and demonstrations on topics including sterile cell culture, light microscopy and histology, protein and gene expression analysis, and viability assays are covered. The advantages of 3D cell cultures will be discussed and practical work on manufacturing and evaluating hydrogels and scaffolds for tissue engineering will be performed in small groups. In addition to practical lab work, the course will teach skills in data acquisition/analysis.
402-0674-00LPhysics in Medical Research: From Atoms to Cells Information W6 KP2V + 1UB. K. R. Müller
KurzbeschreibungScanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells.
LernzielThe lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. These characterization techniques are vital for optimizing the preparation of medical implants and the determination of tissue's anisotropies within the human body.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

3D scaffolds are important for tissue augmentation and engineering. Design, preparation methods, and characterization of these highly porous 3D microstructures are also presented.

Visiting clinical research in a leading university hospital will show the usefulness of the lecture series.
535-0423-00LDrug Delivery and Drug TargetingW2 KP1.5VJ.‑C. Leroux, A. Spyrogianni Roveri
KurzbeschreibungDie Studierenden erwerben einen Überblick über derzeit aktuelle Prinzipien, Methoden und Systeme zur kontrollierten Abgabe und zum Targeting von Arzneistoffen. Damit sind die Studierenden in der Lage, das Gebiet gemäss wissenschaftlichen Kriterien zu verstehen und zu beurteilen.
LernzielDie Studierenden verfügen über einen Überblick über derzeit aktuelle Prinzipien und Systeme zur kontrollierten Abgabe und zum Targeting von Arzneistoffen. Im Vordergrund der Lehrveranstaltung steht die Entwicklung von Fähigkeiten zum Verständnis der betreffenden Technologien und Methoden, ebenso wie der Möglichkeiten und Grenzen ihres therapeutischen Einsatzes. Im Zentrum stehen therapeutische Peptide, Proteine, Nukleinsäuren und Impfstoffe.
InhaltDer Kurs behandelt folgende Themen: Arzneistoff-targeting und Freigabeprinzipien, makromolekulare Arzneistofftransporter, Liposomen, Mizellen, Mikro/Nanopartikel, Gele und Implantate, Anwendung von Impfstoffen, Abgabe im Gastrointestinaltrakt, synthetische Transporter für Arzneistoffe auf Nukleinsäurebasis, ophthalmische Vehikel und neue Trends in transdermaler und nasaler Arzneistofffreigabe.
SkriptAusgewählte Skripten, Vorlesungsunterlagen und unterstützendes Material werden entweder direkt an der Vorlesung ausgegeben oder sind über das Web zugänglich:

http://www.galenik.ethz.ch/teaching/drug_del_drug_targ

Diese Website enthält auch zusätzliche Unterlagen zu peroralen Abgabesystemen, zur gastrointestinalen Passage von Arzneiformen, transdermalen Systemen und über Abgabesysteme für alternative Absorptionswege. Diese Stoffgebiete werden speziell in der Vorlesung Galenische Pharmazie II behandelt.
LiteraturA.M. Hillery, K. Park. Drug Delivery: Fundamentals & Applications, second edition, CRC Press, Boca Raton, FL, 2017.

B. Wang B, L. Hu, T.J. Siahaan. Drug Delivery - Principles and Applications, second edition, John Wiley & Sons, Hoboken NJ, 2016.

Y. Perrie, T. Rhades. Pharmaceutics - Drug Delivery and Targeting, second edition, Pharmaceutical Press, London and Chicago, 2012.

Weitere Literatur in der Vorlesung.
Vertiefung Bioelectronics
Kernfächer
NummerTitelTypECTSUmfangDozierende
151-0604-00LMicrorobotics Information W4 KP3GB. Nelson
KurzbeschreibungMicrorobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course students are expected to submit assignments. The course concludes with an end-of-semester examination.
LernzielThe objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field.
InhaltMain topics of the course include:
- Scaling laws at micro/nano scales
- Electrostatics
- Electromagnetism
- Low Reynolds number flows
- Observation tools
- Materials and fabrication methods
- Applications of biomedical microrobots
SkriptThe powerpoint slides presented in the lectures will be mad available as pdf files. Several readings will also be made available electronically.
Voraussetzungen / BesonderesThe lecture will be taught in English.
227-0386-00LBiomedical Engineering Information W4 KP3GJ. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong
KurzbeschreibungIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined.
LernzielIntroduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations.
InhaltIntroduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism.
Practical and theoretical exercises in small groups in the laboratory.
SkriptIntroduction to Biomedical Engineering
by Enderle, Banchard, and Bronzino

AND

https://www1.ethz.ch/lbb/Education/BME
227-1037-00LIntroduction to Neuroinformatics Information W6 KP2V + 1UV. Mante, M. Cook, B. Grewe, G. Indiveri, K. A. Martin
KurzbeschreibungThe course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties (action potentials, channels), neuronal anatomy, synaptic structures, and neuronal networks. Simple models of computation, learning, and behavior will be explained. Some artificial systems (robot, chip) are presented.
LernzielUnderstanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monocultures of physics, maths, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions.
InhaltThis course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.
376-1714-00LBiocompatible MaterialsW4 KP3GK. Maniura, J. Möller, M. Zenobi-Wong
KurzbeschreibungIntroduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.
LernzielThe class consists of three parts:
1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
InhaltIntroduction into native and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering and drug delivery are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.
In addition, a link between academic research and industrial entrepreneurship is established by external guest speakers.
SkriptHandouts can be accessed online.
LiteraturLiteratur
Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013
Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011

(available online via ETH library)

Handouts provided during the classes and references therin.
Praktika
NummerTitelTypECTSUmfangDozierende
465-0800-00LPractical Work Belegung eingeschränkt - Details anzeigen
Nur für MAS in Medizinphysik
O4 KPexterne Veranstalter
KurzbeschreibungThe practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.
LernzielThe practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.
Wahlfächer
NummerTitelTypECTSUmfangDozierende
227-1033-00LNeuromorphic Engineering I Information Belegung eingeschränkt - Details anzeigen
Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots.
Preference is given to students that require this class as part of their major.
W6 KP2V + 3UT. Delbrück, G. Indiveri, S.‑C. Liu
KurzbeschreibungThis course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.
LernzielUnderstanding of the characteristics of neuromorphic circuit elements.
InhaltNeuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems.
LiteraturS.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.
Voraussetzungen / BesonderesParticular: The course is highly recommended for those who intend to take the spring semester course 'Neuromorphic Engineering II', that teaches the conception, simulation, and physical layout of such circuits with chip design tools.

Prerequisites: Background in basics of semiconductor physics helpful, but not required.
227-2037-00LPhysical Modelling and Simulation Information W6 KP4GJ. Smajic
KurzbeschreibungThis module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects.
LernzielBasic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for physical modelling and simulation. Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained.
InhaltThe module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations through several practical examples of HF-engineering such as coupled electromagnetic-mechanical and electromagnetic-thermal analysis of MEMS.
In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or chose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers.
376-1103-00LFrontiers in NanotechnologyW4 KP4VV. Vogel, weitere Dozierende
KurzbeschreibungMany disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers.
LernzielBuilding upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.

The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently “sizzling” in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.
InhaltStarting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.
SkriptAll the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.
402-0674-00LPhysics in Medical Research: From Atoms to Cells Information W6 KP2V + 1UB. K. R. Müller
KurzbeschreibungScanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells.
LernzielThe lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. These characterization techniques are vital for optimizing the preparation of medical implants and the determination of tissue's anisotropies within the human body.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

3D scaffolds are important for tissue augmentation and engineering. Design, preparation methods, and characterization of these highly porous 3D microstructures are also presented.

Visiting clinical research in a leading university hospital will show the usefulness of the lecture series.
529-0837-00LBiomicrofluidic Engineering Belegung eingeschränkt - Details anzeigen
Number of participants limited to 30.
W7 KP3GA. de Mello
KurzbeschreibungMicrofluidics describes the behaviour, control and manipulation of fluids that are geometrically constrained within sub-microliter environments. The use of microfluidic devices offers an opportunity to control physical and chemical processes with unrivalled precision, and in turn provides a route to performing chemistry and biology in an ultra-fast and high-efficiency manner.
LernzielIn the course students will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis. A design workshop will allow students to develop new microscale flow processes by appreciating the dominant physics at the microscale. The application of these basic ideas will primarily focus on biological problems and will include a treatment of diagnostic devices for use at the point-of-care, advanced functional material synthesis, DNA analysis, proteomics and cell-based assays. Lectures, assignments and the design workshop will acquaint students with the state-of-the-art in applied microfluidics.
InhaltSpecific topics in the course include, but not limited to:

1. Theoretical Concepts
Features of mass and thermal transport on the microscale
Key scaling laws
2. Microfluidic Device Manufacture
Conventional lithographic processing of rigid materials
Soft lithographic processing of plastics and polymers
Mass fabrication of polymeric devices
3. Unit operations and functional components
Analytical separations (electrophoresis and chromatography)
Chemical and biological synthesis
Sample pre-treatment (filtration, SPE, pre-concentration)
Molecular detection
4. Design Workshop
Design of microfluidic architectures for PCR, distillation & mixing
5. Contemporary Applications in Biological Analysis
Microarrays
Cellular analyses (single cells, enzymatic assays, cell sorting)
Proteomics
6. System integration
Applications in radiochemistry, diagnostics and high-throughput experimentation
SkriptLecture handouts, background literature, problem sheets and notes will be provided electronically.
636-0108-00LBiological Engineering and Biotechnology
Attention: This course was offered in previous semesters with the number: 636-0003-00L "Biological Engineering and Biotechnology". Students that already passed course 636-0003-00L cannot receive credits for course 636-0108-00L.
W4 KP3VM. Fussenegger
KurzbeschreibungBiological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.
LernzielBiological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.
Inhalt1. Insight Into The Mammalian Cell Cycle. Cycling, The Balance Between Proliferation and Cancer - Implications For Biopharmaceutical Manufacturing. 2. The Licence To Kill. Apoptosis Regulatory Networks - Engineering of Survival Pathways To Increase Robustness of Production Cell Lines. 3. Everything Under Control I. Regulated Transgene Expression in Mammalian Cells - Facts and Future. 4. Secretion Engineering. The Traffic Jam getting out of the Cell. 5. From Target To Market. An Antibody's Journey From Cell Culture to The Clinics. 6. Biology and Malign Applications. Do Life Sciences Enable the Development of Biological Weapons? 7. Functional Food. Enjoy your Meal! 8. Industrial Genomics. Getting a Systems View on Nutrition and Health - An Industrial Perspective. 9. IP Management - Food Technology. Protecting Your Knowledge For Business. 10. Biopharmaceutical Manufacturing I. Introduction to Process Development. 11. Biopharmaceutical Manufacturing II. Up- stream Development. 12. Biopharmaceutical Manufacturing III. Downstream Development. 13. Biopharmaceutical Manufacturing IV. Pharma Development.
SkriptHandout during the course.
Vertiefung Neuroinformatics
Kernfächer
NummerTitelTypECTSUmfangDozierende
227-1037-00LIntroduction to Neuroinformatics Information W6 KP2V + 1UV. Mante, M. Cook, B. Grewe, G. Indiveri, K. A. Martin
KurzbeschreibungThe course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties (action potentials, channels), neuronal anatomy, synaptic structures, and neuronal networks. Simple models of computation, learning, and behavior will be explained. Some artificial systems (robot, chip) are presented.
LernzielUnderstanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monocultures of physics, maths, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions.
InhaltThis course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks.
Praktika
NummerTitelTypECTSUmfangDozierende
465-0800-00LPractical Work Belegung eingeschränkt - Details anzeigen
Nur für MAS in Medizinphysik
O4 KPexterne Veranstalter
KurzbeschreibungThe practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.
LernzielThe practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.
Wahlfächer
NummerTitelTypECTSUmfangDozierende
227-1033-00LNeuromorphic Engineering I Information Belegung eingeschränkt - Details anzeigen
Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots.
Preference is given to students that require this class as part of their major.
W6 KP2V + 3UT. Delbrück, G. Indiveri, S.‑C. Liu
KurzbeschreibungThis course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions.
LernzielUnderstanding of the characteristics of neuromorphic circuit elements.
InhaltNeuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems.
LiteraturS.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications.
Voraussetzungen / BesonderesParticular: The course is highly recommended for those who intend to take the spring semester course 'Neuromorphic Engineering II', that teaches the conception, simulation, and physical layout of such circuits with chip design tools.

Prerequisites: Background in basics of semiconductor physics helpful, but not required.
376-1795-00LAdvanced Course in Neurobiology I (Functional Anatomy of the Rodent Brain) (University of Zurich) Information
Findet dieses Semester nicht statt.
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: SPV0Y009

Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html
W2 KP2VJ.‑M. Fritschy, H. U. Zeilhofer
KurzbeschreibungThe goal of this Advanced Course in Neurobiology is to provide students with a broader knowledge in several important areas of neurobiology. The course consists of four parts: Part I deals with various topics in developmental neurobiology. Part II is devoted to aspects of signal transduction. Part III focuses on synaptic transmission. Part IV gives deeper insights into systems neuroscience.
LernzielThis credit point course is designed for doctoral students who have successfully completed the Introductory Course in Neuroscience at the Neuroscience Center Zürich. The goal is to provide students with a broader and deeper knowledge in several important areas of neurobiology.
Voraussetzungen / BesonderesFür Doktorierende des Zentrums für Neurowissenschaften Zürich. Nicht für Master-Studierende geeignet.
376-1791-00LIntroductory Course in Neuroscience I (University of Zurich) Information
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: SPV0Y005

Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html
W2 KP2VW. Knecht, J.‑M. Fritschy
KurzbeschreibungThe course gives an introduction to human and comparative neuroanatomy, molecular, cellular and systems neuroscience.
LernzielThe course gives an introduction to human and comparative neuroanatomy, molecular, cellular and systems neuroscience.
Inhalt1) Human Neuroanatomy I&II
2) Comparative Neuroanatomy
3) Development I&II
4) Membran and Action Potential
5) Synaptic Transmission & Plasticity I&II
6) Glia and Blodd-Brain-Barrier
7) Somatosensory and Motor System
8) Visual System
9) Auditory System
10) Circuits underlying Emotion
11) Modeling of Neural Circuits
Voraussetzungen / BesonderesFor doctoral students of the Neuroscience Center Zurich (ZNZ).
Vertiefung Biocompatible Materials
Kernfächer
Von den beiden Lerneinheiten 376-1622-00L Practical Methods in Tissue Engineering (angeboten im Herbstsemester) und 376-1624-00L Practical Methods in Biofabrication (angeboten im Frühjahrssemester) dürfen nicht beide angerechnet werden.
NummerTitelTypECTSUmfangDozierende
227-0965-00LMicro and Nano-Tomography of Biological TissuesW4 KP3GM. Stampanoni, P. A. Kaestner
KurzbeschreibungEinführung in die physikalischen und technischen Grundkenntnisse der tomographischen Röntgenmikroskopie. Verschiedene Röntgenbasierten-Abbildungsmechanismen (Absorptions-, Phasen- und Dunkelfeld-Kontrast) werden erklärt und deren Einsatz in der aktuellen Forschung vorgestellt, insbesondere in der Biologie. Die quantitative Auswertung tomographische Datensätzen wird ausführlich beigebracht.
LernzielEinführung in die Grundlagen der Röntgentomographie auf der Mikrometer- und Nanometerskala, sowie in die entsprechenden Bildbearbeitungs- und Quantifizierungsmethoden, unter besonderer Berücksichtigung von biologischen Anwendungen.
InhaltSynchrotron basierte Röntgenmikro- und Nanotomographie ist heutzutage eine leistungsfähige Technik für die hochaufgelösten zerstörungsfreien Untersuchungen einer Vielfalt von Materialien. Die aussergewöhnlichen Stärke und Kohärenz der Strahlung einer Synchrotronquelle der dritten Generation erlauben quantitative drei-dimensionale Aufnahmen auf der Mikro- und Nanometerskala und erweitern die klassischen Absorption-basierten Verfahrensweisen auf die kontrastreicheren kantenverstärkten und phasenempfindlichen Methoden, die für die Analyse von biologischen Proben besonders geeignet sind.

Die Vorlesung umfasst eine allgemeine Einführung in die Grundsätze der Röntgentomographie, von der Bildentstehung bis zur 3D Bildrekonstruktion. Sie liefert die physikalischen und technischen Grundkentnisse über die bildgebenden Synchrotronstrahllinien, vertieft die neusten Phasenkontrastmethoden und beschreibt die ersten Anwendungen nanotomographischer Röntgenuntersuchungen.

Schliesslich liefert der Kurs den notwendigen Hintergrund, um die quantitative Auswertung tomographischer Daten zu verstehen, von der grundlegenden Bildanalyse bis zur komplexen morphometrischen Berechnung und zur 3D-Visualisierung, unter besonderer Berücksichtigung von biomedizinischen Anwendungen.
SkriptOnline verfügbar
LiteraturWird in der Vorlesung angegeben.
376-1622-00LPractical Methods in Tissue Engineering Belegung eingeschränkt - Details anzeigen
Number of participants limited to 16
W5 KP4PK. Würtz-Kozak, O. Krupkova, M. Zenobi-Wong
KurzbeschreibungThe goal of this course is to teach MSc students the necessary skills for doing research in the fields of tissue engineering and regenerative medicine.
LernzielPractical exercises and demonstrations on topics including sterile cell culture, light microscopy and histology, protein and gene expression analysis, and viability assays are covered. The advantages of 3D cell cultures will be discussed and practical work on manufacturing and evaluating hydrogels and scaffolds for tissue engineering will be performed in small groups. In addition to practical lab work, the course will teach skills in data acquisition/analysis.
376-1714-00LBiocompatible MaterialsW4 KP3GK. Maniura, J. Möller, M. Zenobi-Wong
KurzbeschreibungIntroduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.
LernzielThe class consists of three parts:
1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
InhaltIntroduction into native and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering and drug delivery are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.
In addition, a link between academic research and industrial entrepreneurship is established by external guest speakers.
SkriptHandouts can be accessed online.
LiteraturLiteratur
Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013
Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011

(available online via ETH library)

Handouts provided during the classes and references therin.
Praktika
NummerTitelTypECTSUmfangDozierende
465-0800-00LPractical Work Belegung eingeschränkt - Details anzeigen
Nur für MAS in Medizinphysik
O4 KPexterne Veranstalter
KurzbeschreibungThe practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.
LernzielThe practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.
Wahlfächer
NummerTitelTypECTSUmfangDozierende
151-0255-00LEnergy Conversion and Transport in BiosystemsW4 KP2V + 1UA. Ferrari
KurzbeschreibungTheorie und Anwendung von Thermodynamik und Energieerhaltung in biologischen Systemen mit Schwerpunkt auf Zellebene.
LernzielTheorie und Anwendung von Energieerhaltung auf Zellebene. Verständnis für die grundlegenden Stofftransport-Kreisläufe in menschlichen Zellen und die Mechanismen, welche diese Kreisläufe beeinflussen. Parallelen zu anderen Gebieten im Ingenieurswesen erkennen. Wärme- und Massentransport Prozesse in der Zelle, Kraft Entwicklung der Zelle, und die Verbindung zu modernen biomedizinischen Technologien.
InhaltMassentransportmodelle für den Transport von chemischen Spezies in der menschlichen Zelle. Organisation und Funktion der Zellmembran und des Zytoskeletts. Die Rolle molekularer Motoren in der Kraftentwicklung der Zelle und deren Funktion in der Fortbewegung der Zelle. Beschreibung der Funktionsweise dieser Systeme sowie der experimentellen Analyse und Simulationen um sie besser zu verstehen. Einführung in den Zell-Metabolismus, Zell-Energietransport und die Zelluläre Thermodynamik.
SkriptKursmaterial wird in Form von Hand-outs verteilt.
LiteraturNotizen sowie Referenzen aus der Vorlesung.
327-1101-00LBiomineralization Information W2 KP2VK.‑H. Ernst
KurzbeschreibungThe course addresses undergraduate and graduate students interested in getting introduced into the basic concepts of biomineralization.
LernzielThe course aims to introduce the basic concepts of biomineralization and the underlying principles, such as supersaturation, nucleation and growth of minerals, the interaction of biomolecules with mineral surfaces, and cell biology of inorganic materials creation. An important part of this class is the independent study and the presentation of original literature from the field.
InhaltBiomineralization is a multidisciplinary field. Topics dealing with biology, molecular and cell biology, solid state physics, mineralogy, crystallography, organic and physical chemistry, biochemistry, dentistry, oceanography, geology, etc. are addressed. The course covers definition and general concepts of biomineralization (BM)/ types of biominerals and their function / crystal nucleation and growth / biological induction of BM / control of crystal morphology, habit, shape and orientation by organisms / strategies of compartmentalization / the interface between biomolecules (peptides, polysaccharides) and the mineral phase / modern experimental methods for studying BM phenomena / inter-, intra, extra- and epicellular BM / organic templates and matrices for BM / structure of bone, teeth (vertebrates and invertebrates) and mollusk shells / calcification / silification in diatoms, radiolaria and plants / calcium and iron storage / impact of BM on lithosphere and atmosphere/ evolution / taxonomy of organisms.

1. Introduction and overview
2. Biominerals and their functions
3. Chemical control of biomineralization
4. Control of morphology: Organic templates and additives
5. Modern methods of investigation of BM
6. BM in matrices: bone and nacre
7. Vertebrate teeth
8. Invertebrate teeth
9. BM within vesicles: calcite of coccoliths
10. Silica
11. Iron storage and mineralization
SkriptScript with more than 600 pages with many illustrations will be distributed free of charge.
Literatur1) S. Mann, Biomineralization, Oxford University Press, 2001, Oxford, New York
2) H. Lowenstam, S. Weiner, On Biomineralization, Oxford University Press, 1989, Oxford
3) P. M. Dove, J. J. DeYoreo, S. Weiner (Eds.) Biomineralization, Reviews in Mineralogoy & Geochemistry Vol. 54, 2003
Voraussetzungen / BesonderesNo special requirements are needed for attending. Basic knowledge in chemistry and cell biology is expected.
376-1103-00LFrontiers in NanotechnologyW4 KP4VV. Vogel, weitere Dozierende
KurzbeschreibungMany disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers.
LernzielBuilding upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.

The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently “sizzling” in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.
InhaltStarting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.
SkriptAll the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.
402-0674-00LPhysics in Medical Research: From Atoms to Cells Information W6 KP2V + 1UB. K. R. Müller
KurzbeschreibungScanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells.
LernzielThe lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. These characterization techniques are vital for optimizing the preparation of medical implants and the determination of tissue's anisotropies within the human body.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

3D scaffolds are important for tissue augmentation and engineering. Design, preparation methods, and characterization of these highly porous 3D microstructures are also presented.

Visiting clinical research in a leading university hospital will show the usefulness of the lecture series.
Vertiefung Molecular Biology and Biophysics
Kernfächer
NummerTitelTypECTSUmfangDozierende
227-0945-00LCell and Molecular Biology for Engineers I
This course is part I of a two-semester course.
W3 KP3GC. Frei
KurzbeschreibungThe course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.
LernzielAfter completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.
InhaltLectures will include the following topics: DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells.

In addition, three journal clubs will be held, where one/two publictions will be discussed (part I: 1 Journal club, part II: 2 Journal Clubs). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 25% for the final grade.
SkriptScripts of all lectures will be available.
Literatur"Molecular Biology of the Cell" (6th edition) by Alberts, Johnson, Lewis, Raff, Roberts, and Walter.
551-1601-00LBiophysics of Biological Macromolecules
The course will only take place with a minimum of 4 participants.
W6 KP2V + 1UA. D. Gossert, F. Allain, A. Cléry, S. Jonas
KurzbeschreibungThis lecture course targets physics students and students of interdisciplinary sciences (major physics) for their education in biophysics. In this course the basics of molecular biology are presented bearing in mind the special interests of the physics students.
LernzielBasics of molecular biology and biophysics in in view of the special interest of students in physics.
InhaltThis lecture course targets physics students and students of interdisciplinary sciences (major physics) for their education in biophysics. In this course the basics of molecular biology are presented bearing in mind the special interests of the physics students. The topics include: properties of biological macromolecules, introduction to the genetic system of E.coli bacteria, transcription, translation, discussion of structure and function of proteins, quantitative description of enzyme function and allosteric interactions, biotechnology, introduction to optical spectroscopy, X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy of biopolymers in solution.
Skript- additional documentation in support of text book
Voraussetzungen / Besonderessmall classes with active participation of students
Praktika
NummerTitelTypECTSUmfangDozierende
465-0800-00LPractical Work Belegung eingeschränkt - Details anzeigen
Nur für MAS in Medizinphysik
O4 KPexterne Veranstalter
KurzbeschreibungThe practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution.
LernzielThe practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem.
Wahlfächer
NummerTitelTypECTSUmfangDozierende
327-1101-00LBiomineralization Information W2 KP2VK.‑H. Ernst
KurzbeschreibungThe course addresses undergraduate and graduate students interested in getting introduced into the basic concepts of biomineralization.
LernzielThe course aims to introduce the basic concepts of biomineralization and the underlying principles, such as supersaturation, nucleation and growth of minerals, the interaction of biomolecules with mineral surfaces, and cell biology of inorganic materials creation. An important part of this class is the independent study and the presentation of original literature from the field.
InhaltBiomineralization is a multidisciplinary field. Topics dealing with biology, molecular and cell biology, solid state physics, mineralogy, crystallography, organic and physical chemistry, biochemistry, dentistry, oceanography, geology, etc. are addressed. The course covers definition and general concepts of biomineralization (BM)/ types of biominerals and their function / crystal nucleation and growth / biological induction of BM / control of crystal morphology, habit, shape and orientation by organisms / strategies of compartmentalization / the interface between biomolecules (peptides, polysaccharides) and the mineral phase / modern experimental methods for studying BM phenomena / inter-, intra, extra- and epicellular BM / organic templates and matrices for BM / structure of bone, teeth (vertebrates and invertebrates) and mollusk shells / calcification / silification in diatoms, radiolaria and plants / calcium and iron storage / impact of BM on lithosphere and atmosphere/ evolution / taxonomy of organisms.

1. Introduction and overview
2. Biominerals and their functions
3. Chemical control of biomineralization
4. Control of morphology: Organic templates and additives
5. Modern methods of investigation of BM
6. BM in matrices: bone and nacre
7. Vertebrate teeth
8. Invertebrate teeth
9. BM within vesicles: calcite of coccoliths
10. Silica
11. Iron storage and mineralization
SkriptScript with more than 600 pages with many illustrations will be distributed free of charge.
Literatur1) S. Mann, Biomineralization, Oxford University Press, 2001, Oxford, New York
2) H. Lowenstam, S. Weiner, On Biomineralization, Oxford University Press, 1989, Oxford
3) P. M. Dove, J. J. DeYoreo, S. Weiner (Eds.) Biomineralization, Reviews in Mineralogoy & Geochemistry Vol. 54, 2003
Voraussetzungen / BesonderesNo special requirements are needed for attending. Basic knowledge in chemistry and cell biology is expected.
376-1103-00LFrontiers in NanotechnologyW4 KP4VV. Vogel, weitere Dozierende
KurzbeschreibungMany disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers.
LernzielBuilding upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.

The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently “sizzling” in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.
InhaltStarting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.
SkriptAll the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.
402-0674-00LPhysics in Medical Research: From Atoms to Cells Information W6 KP2V + 1UB. K. R. Müller
KurzbeschreibungScanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells.
LernzielThe lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour.

As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced.

The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes.

High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering.

Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. These characterization techniques are vital for optimizing the preparation of medical implants and the determination of tissue's anisotropies within the human body.

Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function.

3D scaffolds are important for tissue augmentation and engineering. Design, preparation methods, and characterization of these highly porous 3D microstructures are also presented.

Visiting clinical research in a leading university hospital will show the usefulness of the lecture series.
535-0423-00LDrug Delivery and Drug TargetingW2 KP1.5VJ.‑C. Leroux, A. Spyrogianni Roveri
KurzbeschreibungDie Studierenden erwerben einen Überblick über derzeit aktuelle Prinzipien, Methoden und Systeme zur kontrollierten Abgabe und zum Targeting von Arzneistoffen. Damit sind die Studierenden in der Lage, das Gebiet gemäss wissenschaftlichen Kriterien zu verstehen und zu beurteilen.
LernzielDie Studierenden verfügen über einen Überblick über derzeit aktuelle Prinzipien und Systeme zur kontrollierten Abgabe und zum Targeting von Arzneistoffen. Im Vordergrund der Lehrveranstaltung steht die Entwicklung von Fähigkeiten zum Verständnis der betreffenden Technologien und Methoden, ebenso wie der Möglichkeiten und Grenzen ihres therapeutischen Einsatzes. Im Zentrum stehen therapeutische Peptide, Proteine, Nukleinsäuren und Impfstoffe.
InhaltDer Kurs behandelt folgende Themen: Arzneistoff-targeting und Freigabeprinzipien, makromolekulare Arzneistofftransporter, Liposomen, Mizellen, Mikro/Nanopartikel, Gele und Implantate, Anwendung von Impfstoffen, Abgabe im Gastrointestinaltrakt, synthetische Transporter für Arzneistoffe auf Nukleinsäurebasis, ophthalmische Vehikel und neue Trends in transdermaler und nasaler Arzneistofffreigabe.
SkriptAusgewählte Skripten, Vorlesungsunterlagen und unterstützendes Material werden entweder direkt an der Vorlesung ausgegeben oder sind über das Web zugänglich:

http://www.galenik.ethz.ch/teaching/drug_del_drug_targ

Diese Website enthält auch zusätzliche Unterlagen zu peroralen Abgabesystemen, zur gastrointestinalen Passage von Arzneiformen, transdermalen Systemen und über Abgabesysteme für alternative Absorptionswege. Diese Stoffgebiete werden speziell in der Vorlesung Galenische Pharmazie II behandelt.
LiteraturA.M. Hillery, K. Park. Drug Delivery: Fundamentals & Applications, second edition, CRC Press, Boca Raton, FL, 2017.

B. Wang B, L. Hu, T.J. Siahaan. Drug Delivery - Principles and Applications, second edition, John Wiley & Sons, Hoboken NJ, 2016.

Y. Perrie, T. Rhades. Pharmaceutics - Drug Delivery and Targeting, second edition, Pharmaceutical Press, London and Chicago, 2012.

Weitere Literatur in der Vorlesung.
551-1615-00LNMR Methods for Studies of Biological Macromolecules Information
Prerequisites: Basic knowledge in biological NMR spectroscopy.
W1 KP2SA. D. Gossert
KurzbeschreibungSeminar series on technical aspects of high resolution nuclear magnetic resonance (NMR) spectroscopy with biological macromolecules.
LernzielIntroduction and discussion of advanced methods for recording and analysis of NMR data with biological macromolecules.
InhaltSeminar series on technical aspects of high-resolution nuclear magnetic resonance (NMR) spectroscopy with biological macromolecules.
551-1619-00LStrukturbiologieW1 KP1KR. Glockshuber, F. Allain, N. Ban, K. Locher, M. Pilhofer, E. Weber-Ban, K. Wüthrich
KurzbeschreibungDer Kurs besteht aus Forschungs-Seminaren aus dem Gebiet der Strukturbiologie, Biochemie und Biophysik, die von Wissenschaftlern des Nationalen Schwerpunktprogramms (NCCR) Strukturbiologie gehalten werden, als auch von externen Sprechern. Informationen über die einzelnen Vorträge:
http://www.structuralbiology.uzh.ch/educ002.asp
http://www.biol.ethz.ch/dbiol-cal/index
LernzielZiel des Kurses ist es, Doktorierenden und Postdoktoranden einen breiten Überblick über die jüngsten Entwicklungen auf dem Gebiet der Strukturbiologie, Biochemie und Biophysik zu vermitteln
551-0307-00LMolecular and Structural Biology I: Protein Structure and Function Information
D-BIOL students are obliged to take part I and part II (next semester) as a two-semester course
W3 KP2VR. Glockshuber, K. Locher, E. Weber-Ban
KurzbeschreibungBiophysik der Proteinfaltung, Membranproteine und Biophysik von Membranen, enzymatischen Katalyse, katalytische RNA und RNAi, aktuelle Themen in Proteinbiophysik und Strukturbiologie.
LernzielVerständnis von Struktur/Funktionsbeziehungen in Proteinen, Proteinfaltung, Vertiefung der Kenntnisse in Biophysik, in physikalischen Messmethoden und modernen Methoden der Proteinreinigung und Protein-Mikroanalytik.
SkriptSkripte zu einzelnen Themen der Vorlesung sind unter http://www.mol.biol.ethz.ch/teaching abgelegt.
LiteraturGrundlagen:
- Creighton, T.E., Proteins, Freeman, (1993).
- Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman.
- Berg, Tymoczko, Stryer: Biochemistry (5th edition), Freeman (2001).

Aktuelle Themen: Literatur wird jeweils in der Vorlesung angegeben
636-0108-00LBiological Engineering and Biotechnology
Attention: This course was offered in previous semesters with the number: 636-0003-00L "Biological Engineering and Biotechnology". Students that already passed course 636-0003-00L cannot receive credits for course 636-0108-00L.
W4 KP3VM. Fussenegger
KurzbeschreibungBiological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.
LernzielBiological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.
Inhalt1. Insight Into The Mammalian Cell Cycle. Cycling, The Balance Between Proliferation and Cancer - Implications For Biopharmaceutical Manufacturing. 2. The Licence To Kill. Apoptosis Regulatory Networks - Engineering of Survival Pathways To Increase Robustness of Production Cell Lines. 3. Everything Under Control I. Regulated Transgene Expression in Mammalian Cells - Facts and Future. 4. Secretion Engineering. The Traffic Jam getting out of the Cell. 5. From Target To Market. An Antibody's Journey From Cell Culture to The Clinics. 6. Biology and Malign Applications. Do Life Sciences Enable the Development of Biological Weapons? 7. Functional Food. Enjoy your Meal! 8. Industrial Genomics. Getting a Systems View on Nutrition and Health - An Industrial Perspective. 9. IP Management - Food Technology. Protecting Your Knowledge For Business. 10. Biopharmaceutical Manufacturing I. Introduction to Process Development. 11. Biopharmaceutical Manufacturing II. Up- stream Development. 12. Biopharmaceutical Manufacturing III. Downstream Development. 13. Biopharmaceutical Manufacturing IV. Pharma Development.
SkriptHandout during the course.