Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Verfahrenstechnik Master Information
Kernfächer
NummerTitelTypECTSUmfangDozierende
151-0940-00LModelling and Mathematical Methods in Process and Chemical EngineeringW4 KP3GM. Mazzotti
KurzbeschreibungEinführung in die Modellierungstechniken und mathematischen Methoden für nichtnumerische Lösungen von Gleichungen in der chemischen Verfahrenstechnik.
LernzielEinführung in die Modellierungstechniken und mathematischen Methoden für nichtnumerische Lösungen von Gleichungen in der chemischen Verfahrenstechnik.
InhaltFormulierung und Bearbeitung von mathematischen Modellen, Auswertung und Präsentation von Resultaten, Matrizen und deren Anwendung, Nichtlineare, gewöhnliche Differentialgl. erster Ordnung u. Stabilitätstheorem, Partielle Differenzialgleichungen erster Ordnung, Einführung in die Störungstheorie, Fallstudien: Mehrdeutigkeiten und Stabilität eines kontinuierlichen Rührkessels; Rückstandskurvendiagramme für einfache Destillation; Dynamik von Chromatographiekolonnen; Kinetik und Dynamik von oszillierenden Reaktionen.
Skriptkein Skript
LiteraturA. Varma, M. Morbidelli, "Mathematical methods in chemical engineering," Oxford University Press (1997)
H.K. Rhee, R. Aris, N.R. Amundson, "First-order partial differential equations. Vol. 1," Dover Publications, New York (1986)
R. Aris, "Mathematical modeling: A chemical engineer’s perspective," Academic Press, San Diego (1999)
151-0944-00LCase Studies on Earth's Natural Resources
Findet dieses Semester nicht statt.
W3 KP3SM. Mazzotti
KurzbeschreibungBy working on case studies, built around everyday consumer products, and by applying engineering principles (e.g. material and energy balances), students will gain insight into natural resources, their usage in today's society, the challenges and the opportunities ensuing from the need to make their use long-term sustainable.
LernzielThe students are supposed to gain insight about our natural resources, and how their usage and supply relate to our society and to us as individuals. The students will analyse how the natural resources form and change, how they are extracted and used, and how we can utilize them in a sustainable way.
InhaltThe students will analyze processes and products in terms of their use of natural resources. The study will use everyday consumer products as examples, will use engineering principles together with physics and chemistry fro the analysis, and will be based on documentation collected by the students withe the help of lecturer and assistants. Through these examples, the students will be made familiar with issues about the circular economy and recycling.
SkriptHandouts during the class.
LiteraturWalther, John V., "Earth's natural resources", (2014) Jones & Bartlett Learning // Oberle, B., Bringezu, S., Hatfield-Dodds, S., Hellweg, S., Schandl, H., Clement, J., "Global Resources Outlook 2019: Natural resources for the future we want - A Report of the International Resource Panel", (2019) United Nations Environment Programme.
Voraussetzungen / BesonderesStudents must be enrolled in a MSc or doctoral program at ETH Zurich.
151-0946-00LMacromolecular Engineering: Networks and GelsW4 KP4GM. Tibbitt
KurzbeschreibungThis course will provide an introduction to the design and physics of soft matter with a focus on polymer networks and hydrogels. The course will integrate fundamental aspects of polymer physics, engineering of soft materials, mechanics of viscoelastic materials, applications of networks and gels in biomedical applications including tissue engineering, 3D printing, and drug delivery.
LernzielThe main learning objectives of this course are: 1. Identify the key characteristics of soft matter and the properties of ideal and non-ideal macromolecules. 2. Calculate the physical properties of polymers in solution. 3. Predict macroscale properties of polymer networks and gels based on constituent chemical structure and topology. 4. Design networks and gels for industrial and biomedical applications. 5. Read and evaluate research papers on recent research on networks and gels and communicate the content orally to a multidisciplinary audience.
SkriptClass notes and handouts.
LiteraturPolymer Physics by M. Rubinstein and R.H. Colby; samplings from other texts.
Voraussetzungen / BesonderesPhysics I+II, Thermodynamics I+II
151-1906-00LMultiphase FlowsW4 KP3GF. Coletti
KurzbeschreibungIntroduction to fluid flows with multiple interacting phases. The emphasis is on regimes where a dispersed phase is carried by a continuous one: e.g., particles, bubbles and droplets suspended in gas or liquid flows, laminar or turbulent. The flow physics is put in the context of natural, biological, and industrial problems.
LernzielThe main learning objectives are:
- identify multiphase flow regimes and relevant non-dimensional parameters
- distinguish spatio-temporal scales at play for each phase
- quantify mutual coupling between different phases
- apply fundamental principles in complex real-world flows
- combine insight from theory, experiments, and numerics
InhaltSingle particle and multi-particle dynamics in laminar and turbulent flows; basics of suspension rheology; effects of surface tension on the formation, evolution and motion of bubbles and droplets; free-surface flows and wind-wave interaction; imaging techniques and modeling approaches.
SkriptLecture slides are made available.
LiteraturSuggested readings are provided for each topic.
Voraussetzungen / BesonderesFundamental knowledge of fluid dynamics is essential.
227-0966-00LQuantitative Big Imaging: From Images to StatisticsW4 KP2V + 1UP. A. Kaestner, M. Stampanoni
KurzbeschreibungThe lecture focuses on the challenging task of extracting robust, quantitative metrics from imaging data and is intended to bridge the gap between pure signal processing and the experimental science of imaging. The course will focus on techniques, scalability, and science-driven analysis.
Lernziel1. Introduction of applied image processing for research science covering basic image processing, quantitative methods, and statistics.
2. Understanding of imaging as a means to accomplish a scientific goal.
3. Ability to apply quantitative methods to complex 3D data to determine the validity of a hypothesis
InhaltImaging is a well established field and is rapidly growing as technological improvements push the limits of resolution in space, time, material and functional sensitivity. These improvements have meant bigger, more diverse datasets being acquired at an ever increasing rate. With methods varying from focused ion beams to X-rays to magnetic resonance, the sources for these images are exceptionally heterogeneous; however, the tools and techniques for processing these images and transforming them into quantitative, biologically or materially meaningful information are similar.
The course consists of equal parts theory and practical analysis of first synthetic and then real imaging datasets. Basic aspects of image processing are covered such as filtering, thresholding, and morphology. From these concepts a series of tools will be developed for analyzing arbitrary images in a very generic manner. Specifically a series of methods will be covered, e.g. characterizing shape, thickness, tortuosity, alignment, and spatial distribution of material features like pores. From these metrics the statistics aspect of the course will be developed where reproducibility, robustness, and sensitivity will be investigated in order to accurately determine the precision and accuracy of these quantitative measurements. A major emphasis of the course will be scalability and the tools of the 'Big Data' trend will be discussed and how cluster, cloud, and new high-performance large dataset techniques can be applied to analyze imaging datasets. In addition, given the importance of multi-scale systems, a data-management and analysis approach based on modern databases will be presented for storing complex hierarchical information in a flexible manner. Finally as a concluding project the students will apply the learned methods on real experimental data from the latest 3D experiments taken from either their own work / research or partnered with an experimental imaging group.
The course provides the necessary background to perform the quantitative evaluation of complicated 3D imaging data in a minimally subjective or arbitrary manner to answer questions coming from the fields of physics, biology, medicine, material science, and paleontology.
SkriptAvailable online. https://imaginglectures.github.io/Quantitative-Big-Imaging-2021/weeklyplan.html
LiteraturWill be indicated during the lecture.
Voraussetzungen / BesonderesIdeally, students will have some familiarity with basic manipulation and programming in languages like Python, Matlab, or R. Interested students who are worried about their skill level in this regard are encouraged to contact Anders Kaestner directly (anders.kaestner@psi.ch).

More advanced students who are familiar with Python, C++, (or in some cases Java) will have to opportunity to develop more of their own tools.
529-0191-01LElectrochemical Energy Conversion and Storage TechnologiesW4 KP3GL. Gubler, E. Fabbri, J. Herranz Salañer
KurzbeschreibungThe course provides an introduction to the principles and applications of electrochemical energy conversion (e.g. fuel cells) and storage (e.g. batteries) technologies in the broader context of a renewable energy system.
LernzielStudents will discover the importance of electrochemical energy conversion and storage in energy systems of today and the future, specifically in the framework of renewable energy scenarios. Basics and key features of electrochemical devices will be discussed, and applications in the context of the overall energy system will be highlighted with focus on future mobility technologies and grid-scale energy storage. Finally, the role of (electro)chemical processes in power-to-X and deep decarbonization concepts will be elaborated.
InhaltOverview of energy utilization: past, present and future, globally and locally; today’s and future challenges for the energy system; climate changes; renewable energy scenarios; introduction to electrochemistry; electrochemical devices, basics and their applications: batteries, fuel cells, electrolyzers, flow batteries, supercapacitors, chemical energy carriers: hydrogen & synthetic natural gas; electromobility; grid-scale energy storage, power-to-gas, power-to-X and deep decarbonization, techno-economics and life cycle analysis.
Skriptall lecture materials will be available for download on the course website.
Literatur- M. Sterner, I. Stadler (Eds.): Handbook of Energy Storage (Springer, 2019).
- C.H. Hamann, A. Hamnett, W. Vielstich; Electrochemistry, Wiley-VCH (2007).
- T.F. Fuller, J.N. Harb: Electrochemical Engineering, Wiley (2018)
Voraussetzungen / BesonderesBasic physical chemistry background required, prior knowledge of electrochemistry basics desired.
529-0633-00LHeterogeneous Reaction EngineeringW4 KP3GJ. Pérez-Ramírez, C. Mondelli
KurzbeschreibungHeterogeneous Reaction Engineering equips students with tools essential for the optimal development of heterogeneous processes. Integrating concepts from chemical engineering and chemistry, students will be introduced to the fundamental principles of heterogeneous reactions and will develop the necessary skills for the selection and design of various types of idealized reactors.
LernzielAt the end of the course the students will understand the basic principles of catalyzed and uncatalyzed heterogeneous reactions. They will know models to represent fluid-fluid and fluid-solid reactions; how to describe the kinetics of surface reactions; how to evaluate mass and heat transfer phenomena and account for their impact on catalyst effectiveness; the principle causes of catalyst deactivation; and reactor systems and protocols for catalyst testing.
InhaltThe following components are covered:
- Fluid-fluid and fluid-solid heterogeneous reactions.
- Kinetics of surface reactions.
- Mass and heat transport phenomena.
- Catalyst effectiveness.
- Catalyst deactivation.
- Strategies for catalyst testing.

These aspects are exemplified through modern examples.
For each core topic, assignments are distributed, corrected, and discussed.
The course also features an industrial lecture.
SkriptScript and booklet of exercises as well as links to the Zoom recordings of the lectures are available in the corresponding Moodle course.
LiteraturH. Scott Fogler: Elements of Chemical Reaction Engineering, Prentice Hall, New Jersey, 1992

O. Levenspiel: Chemical Reaction Engineering, 3rd edition, John Wiley & Sons, New Jersey, 1999

Further relevant sources are given during the course.
636-0111-00LSynthetic Biology I
Attention: This course was offered in previous semesters with the number: 636-0002-00L "Synthetic Biology I". Students that already passed course 636-0002-00L cannot receive credits for course 636-0111-00L.
W4 KP3GS. Panke, J. Stelling
KurzbeschreibungTheoretical & practical introduction into the design of dynamic biological systems at different levels of abstraction, ranging from biological fundamentals of systems design (introduction to bacterial gene regulation, elements of transcriptional & translational control, advanced genetic engineering) to engineering design principles (standards, abstractions) mathematical modelling & systems desig
LernzielAfter the course, students will be able to theoretically master the biological and engineering fundamentals required for biological design to be able to participate in the international iGEM competition (see www.igem.ethz.ch).
InhaltThe overall goal of the course is to familiarize the students with the potential, the requirements and the problems of designing dynamic biological elements that are of central importance for manipulating biological systems, primarily (but not exclusively) prokaryotic systems. Next, the students will be taken through a number of successful examples of biological design, such as toggle switches, pulse generators, and oscillating systems, and apply the biological and engineering fundamentals to these examples, so that they get hands-on experience on how to integrate the various disciplines on their way to designing biological systems.
SkriptHandouts during classes.
LiteraturMark Ptashne, A Genetic Switch (3rd ed), Cold Spring Haror Laboratory Press
Uri Alon, An Introduction to Systems Biology, Chapman & Hall
Voraussetzungen / Besonderes1) Though we do not place a formal requirement for previous participation in particular courses, we expect all participants to be familiar with a certain level of biology and of mathematics. Specifically, there will be material for self study available on https://bsse.ethz.ch/bpl/education/lectures/synthetic-biology-i/download.html as of mid January, and everybody is expected to be fully familiar with this material BEFORE THE CLASS BEGINS to be able to follow the different lectures. Please contact sven.panke@bsse.ethz.ch for access to material
2) The course is also thought as a preparation for the participation in the international iGEM synthetic biology summer competition (www.syntheticbiology.ethz.ch, http://www.igem.org). This competition is also the contents of the course Synthetic Biology II. https://bsse.ethz.ch/bpl/education/lectures/synthetic-biology-i/download.html
Multidisziplinfächer
Den Studierenden steht das gesamte Vorlesungsverzeichnis der ETH Zürich, der ETH Lausanne sowie der Universitäten Zürich (https://www.uzh.ch/cmsssl/de/studies/application/chmobilityin.html) und St. Gallen zur individuellen Auswahl offen.
» Gesamtes Lehrangebot der ETH Zürich
Studienarbeit
NummerTitelTypECTSUmfangDozierende
151-1008-00LSemester Project Process Engineering Belegung eingeschränkt - Details anzeigen
Only for Process Engineering MSc.

The subject of the Master Thesis and the choice of the supervisor (ETH-professor) are to be approved in advance by the tutor.
O8 KP17AProfessor/innen
KurzbeschreibungDas Ziel der Studienarbeit ist es, dass Master-Studierende unter Anwendung der erworbenen Fach- und Sozialkompetenzen erste Erfahrungen in der selbständigen Lösung eines technischen Problems sammeln. Die Tutoren/Tutorinnen schlagen das Thema der Studienarbeit vor, arbeiten den Projekt- und Fahrplan zusammen mit den Studierenden aus und überwachen die gesamte Durchführung.
LernzielDas Ziel der Studienarbeit ist es, dass Master-Studierende unter Anwendung der erworbenen Fach- und Sozialkompetenzen erste Erfahrungen in der selbständigen Lösung eines technischen Problems sammeln.
Industrie-Praxis
NummerTitelTypECTSUmfangDozierende
151-1090-00LIndustrial Internship
Access to the company list and request for recognition under www.mavt.ethz.ch/praxis.

No registration required via myStudies.
O8 KPexterne Veranstalter
KurzbeschreibungThe main objective of the minimum twelve-week internship is to expose Master’s students to the industrial work environment. The aim of the Industrial Internship is to apply engineering knowledge to practical situations.
LernzielThe aim of the Industrial Internship is to apply engineering knowledge to practical situations.
GESS Wissenschaft im Kontext
» siehe Studiengang Wissenschaft im Kontext: Typ A: Förderung allgemeiner Reflexionsfähigkeiten
» Empfehlungen aus dem Bereich Wissenschaft im Kontext (Typ B) für das D-MAVT
» siehe Studiengang Wissenschaft im Kontext: Sprachkurse ETH/UZH
Master-Arbeit
NummerTitelTypECTSUmfangDozierende
151-1005-00LMaster's Thesis Process Engineering Belegung eingeschränkt - Details anzeigen
Students who fulfill the following criteria are allowed to begin with their Master's Thesis:
a. successful completion of the bachelor program;
b. fulfilling of any additional requirements necessary to gain admission to the master programme;
c. successful completion of the semester project and industrial internship;
d. achievement of 28 ECTS in the category "Core Courses".

The Master's Thesis must be approved in advance by the tutor and is supervised by a professor of ETH Zurich.
To choose a titular professor as a supervisor, please contact the D-MAVT Student Administration.
O30 KP64DProfessor/innen
KurzbeschreibungDie Master-Arbeit schliesst das Master-Studium ab. Die Master-Arbeit fördert die Fähigkeit der Studierenden zur selbständigen und wissenschaftlich strukturierten Lösung eines theoretischen oder angewandten Problems. Thema und Projektplan werden vom Tutor vorgeschlagen und zusammen mit den Studierenden ausgearbeitet.
LernzielDie Master-Arbeit fördert die Fähigkeit der Studierenden zur selbständigen und wissenschaftlich strukturierten Lösung eines theoretischen oder angewandten Problems.
  • Erste Seite Vorherige Seite Seite  319  von  319